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ABSTRACT: Molecular dynamics (MD) simulation is widely used to study '3 Simutation | _ETe0%T

protein conformations and dynamics. However, conventional simulation suffers ¥ % és Frames X |
from being trapped in some local energy minima that are hard to escape. Thus, by i
most of the computational time is spent sampling in the already visited regions. e

This leads to an inefficient sampling process and further hinders the exploration of
protein movements in affordable simulation time. The advancement of deep
learning provides new opportunities for protein sampling. Variational 5 Seed
autoencoders are a class of deep learning models to learn a low-dimensional R
representation (referred to as the latent space) that can capture the key features of

the input data. Based on this characteristic, we proposed a new adaptive sampling v S
method, latent space-assisted adaptive sampling for protein trajectories (LAST), to - )
accelerate the exploration of protein conformational space. This method R
comprises cycles of (i) variational autoencoder training, (i) seed structure et
selection on the latent space, and (iii) conformational sampling through additional MD simulations. The proposed approach is
validated through the sampling of four structures of two protein systems: two metastable states of Escherichia coli adenosine kinase
(ADK) and two native states of Vivid (VVD). In all four conformations, seed structures were shown to lie on the boundary of
conformation distributions. Moreover, large conformational changes were observed in a shorter simulation time when compared
with structural dissimilarity sampling (SDS) and conventional MD (cMD) simulations in both systems. In metastable ADK
simulations, LAST explored two transition paths toward two stable states, while SDS explored only one and cMD neither. In VVD
light state simulations, LAST was three times faster than ¢MD simulation with a similar conformational space. Overall, LAST is
comparable to SDS and is a promising tool in adaptive sampling. The LAST method is publicly available at https://github.com/smu-
tao-group/LAST to facilitate related research.

Latent vector 2

1. INTRODUCTION methods. Markov state models have been applied to cluster
Molecular dynamics (MD) simulation has a wide application conformations inlt? microstates; " parallel caslc(ade selection
on the study of protein conformations and dynamics.'™> MD (PaCS-MD) "~ and nontargeted PaCS-MD “ calculate the
Recent developments in biocomputing, such as Anton,” root-mean-square deviation (RMSD) to select top snapshots;
AMBER,® and OpenMM,6 have enabled the simulation time frontier expansion sampling17 conducts dimensionality reduc-
scale to milliseconds, which promotes the research in sampling tion with principal component analysis and Gaussian mixture
protein motions and structure 1andscapes.7’8 However, the time models to select frontier structures; structural dissimilarity
scales of many protein functions exceed the time scales sampling (SDS)'® selects new seeds based on principal
achievable through traditional MD simulations. Moreover, component analysis.

protein sampling suffers from being trapped within local energy Recent innovations in deep learning have provided new
minima, proving difficult to escape.”'” As a result, most of the insights into sampling protein conformational space.'”*’
computational time is typically spent in sampling previously Autoencoders (AEs) and variational autoencoders (VAEs)

visited regions, which hinders the efficient exploration of
protein conformational space.

Many enhanced sampling methods have been developed to
address this issue. These methods can be classified into two
types. In the first type, biasing potentials are introduced to
expand the sampling space, such as metadynamics'"'> and
Gaussian-accelerated MD.'? In the second type, seed
structures are selected as restarts for iterative MD simulations.
This is referred to as adaptive sampling, and numerous
methods have been proposed that differ in seed selection

are a class of deep learning models that learn a representation
(encoding), which can capture the key features of input data.
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Figure 1. Workflow of LAST method. To begin with, a short MD simulation is conducted from crystal structures. All sampled conformations are
stored in a pool. In each round, if there is no increase of the maximum RMSD of the newly sampled conformations in consecutive five rounds, the
workflow stops. Otherwise, a VAE model is trained using all conformations in the pool. Then, the seeds are selected on the latent space. For each of
the selected seeds, new MD simulations are conducted, and the sampled conformations are stored in the pool.

Several studies have demonstrated the success of AEs and
VAEs in their applications to protein conformations and
functions.””' ~** In our previous work,”* we showed that VAEs
are capable of learning a low-dimensional representation
(referred to as the latent space) of protein systems. Through
a quantitative study, the learned latent space is shown to be
able to represent conformational characteristics. This property
indicates that the larger differences the two protein
conformations have, the farther their corresponding latent
points are from each other.

In this study, we proposed a new adaptive sampling method,
latent space-assisted adaptive sampling for protein trajectories
(LAST), to accelerate the exploration of protein conforma-
tional space. Initially, a short MD simulation is conducted
starting from the crystal structure. Afterward, the following
steps are repeated iteratively until certain criteria are met. First,
a VAE is trained using sampled protein conformations. Then,
seed structures are selected in the learned latent space. Finally,
starting from these selected seed structures, additional
simulations are conducted to sample more protein con-
formations that will be used in the next round. To quantify the
performance, we applied LAST on four conformations in two
protein systems: two metastable states of Escherichia coli
adenosine kinase (ADK) and two native states of Vivid
(VVD). To better explore the protein conformational space,
ADK conformations sampled from the simulation were
projected onto its two intrinsic angles, and VVD conforma-
tions were projected onto the space using two RMSD values
with reference to the two native structures in dark and light
states, respectively. These collective variables are unrelated and
unknown to the VAE models. Our results showed that seed
structures were consistently located on the boundary of
sampled conformational distributions in all four conformations
regardless of protein projection methods. We further compared
the sampling efficiency among LAST, SDS, and conventional
MD (cMD). In both systems, large conformational changes
were observed in a shorter time in LAST simulations. To be
specific, LAST explored two transition paths toward two stable
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states, while SDS explored one and c¢cMD neither in the
metastable ADK simulations. In VVD simulations, LAST only
took one-third of cMD simulation time to discover a similar
conformational space.

2. METHODS

2.1. Variational Autoencoder. An autoencoder is a type
of deep learning models that aims to encode a high-
dimensional input to a low-dimensional latent space through
an encoder module and decode it back to the original
dimensions through a decoder module. By minimizing the
differences between inputs and outputs, known as reconstruc-
tion loss, the latent space is expected to learn a low-
dimensional representation of the input space. However, the
latent space in an AE is not well constrained and leads to
unsatisfying results when sampling in the latent space.”> To
overcome this issue, variational autoencoders add an
optimization constraint on the latent space to follow a certain
distribution.

The encoder module g,(zlx) is an inference model that
transforms data x into output latent variable z, being
parameterized with ¢. In reverse, the decoder module py(«l
z) is a generative model that transforms latent variable z into
output data X, being parameterized with 6. Both models are
trained simultaneously with a joint distribution as p(x, z) =
po(x12)p(2). p(z) is the constraint distribution for latent space
and typically is chosen as a normal distribution.”® The tractable
variational Bayes approach is used to approximate the

intractable posterior py(zlx) = py(xlz)p(z)/( [ po(xlz)p(z)dz)

by maximizing the evidence lower bound (ELBO)

‘£(¢) 9; x) = [Eqd](zlx)[ logp‘g(xlz)] - KL(‘L/,(le)HP(Z))

IA

log p, (x) (1)

where KL is the Kullback—Leibler divergence.
In our implementation, the VAE model is developed using
Keras package27 with Tensorflow backend.”®

https://doi.org/10.1021/acs.jcim.2c01213
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2.2. Molecular Dynamics Simulations. The initial
structures of four conformations in two protein systems, two
metastable states (PDB ID 1DVR and 2AK3) of E. coli
adenosine kinase (ADK) and two native states (PDB ID 2PD7
and 3RHS) of Vivid (VVD), were taken from the Protein Data
Bank (PDB).” For each conformation, ligands and crystal
waters were removed and chain A was extracted as the starting
structure. The system was further solvated in a box of TIP3P
water molecules and neutralized using Na" and Cl™. Simulation
files were §enerated using tleap™® with the AMBER ff14SB
force field.”' NVT Langevin MD simulations (100 ps) were
carried out, followed by 200 ps of NPT simulations at 1 atm
and 300 K. In each round of LAST method, one 100 ps MD
simulation was conducted for each seed structure. Particle
mesh Ewald (PME) algorithm was used to calculate long-range
electrostatic interactions. The simulation time step was set as 2
fs. All simulations were conducted with OpenMM 7.°

2.3. Latent Space-Assisted Adaptive Sampling for
Protein Trajectories. LAST method includes three steps, and
its workflow is shown in Figure 1. First, a variational
autoencoder is trained using all previous simulations. Second,
the lowest-probability samples are selected on the latent space
and their corresponding protein structures are treated as seeds.
Third, additional MD simulations are conducted from seed
structures.

2.3.1. VAE Training. In each iteration, some preprocessing
procedures are needed. The simulation trajectories are first
aligned to the first frame, and heavy atoms are extracted with
Cartesian coordinates being expanded as a feature vector
(Figure 1A,B). Then, each feature is transformed to a range of
0—1 using min—max linear scaling, which is used to construct a
data set for VAE training.

The architecture of the VAE model is shown in Figure 1C.
In the current study, we design the encoder model being
composed of three hidden layers with a size of 512, 128, and
32 and the decoder model with a size of 32, 128, and 512. The
number and size of hidden layers can be adjusted based on the
size of proteins. The dimension of latent space is set as two for
simplicity and ease of visualization.

2.3.2. Seed Selection. Appropriate seed selection method is
needed to expedite the sampling of protein conformational
space. In LAST, seeds are selected on the two-dimensional
learned latent space of VAE, which has two important
characteristics to enable an efficient seed selection. First, as
demonstrated in our previous work, the distance between two
data points on the latent space is meaningful. Two structurally
similar proteins have a shorter distance between their
corresponding latent vectors. Second, the sampling distribution
of latent space in the VAE is similar but does not strictly follow
a normal distribution. It is likely that the KL divergence term
in the loss function contributes to the normal distribution, and
the reconstruction loss component in the loss function may
contribute to the deviation from the normal distribution. As for
the distribution of the VAE latent space of protein
conformations, the most common protein structures are
encoded in the center of the latent space, while structurally
different proteins are encoded on the boundary. In a data
distribution, samples with the lowest probabilities refer to
those points that differ significantly from other data. Based on
the above two points, it is reasonable to treat the lowest-
probability samples on the latent space as seeds to accelerate
conformational space exploration, as their conformations
deviate from the majority of the sampled ones.

69

To implement the seed selection method, we propose three
improvements to make LAST computationally efficient:

1. Latent space of VAE is not strictly normal after
optimization even though the normality is incentivized
in the loss function. Therefore, a nonparametric
multivariate kernel density estimator, instead of multi-
variate normal density function, is used to fit the latent
space. The estimator is developed in Python statsmodels
library.**

2. Latent space distribution might be skewed so that the
top N lowest-probability samples with the smallest
probability densities tend to gather on one side of the
distribution. To avoid the above issue, the cumulative
distribution function (CDF) of the fitted nonparametric
multivariate kernel density estimator on the latent space,
instead of probability density, is applied to guarantee
that samples from both sides of CDF (values close to 0
and 1) are equally selected. In this case, the first order of
the density estimator was accumulated in the latent
space.

3. Protein conformations corresponding to the lowest-
probability samples can be located and selected based on
data index. These protein conformations might be
similar to each other, resulting in sampling repeated
conformational space from MD simulations starting
from these conformations. Thus, to further boost
sampling efficiency, we require new seed structures to
have at least 1 A RMSD with all previously selected
seeds.

One example of seed selection result is shown in Figure 1D,
where seeds are highlighted in red stars in the latent space
visualization.

2.3.3. Additional MD Simulations. Short MD simulations
are conducted in each round. In the current study, 10 seeds are
selected in one round and a 100 ps simulation is done starting
from each seed. Thus, the total simulation time in each round
is 1 ns. The detail of these simulations is described in Section
2.2.

The above three steps are iteratively done until convergence.
Here, we design the convergence criterion by calculating the
mean RMSD of Ca atoms with regard to the starting protein
structure. The iterative sampling process is terminated once
the mean RMSD stops to increase for successive five rounds or
reaches the maximum round number.

Algorithm 1 Latent space assisted adaptive sampling for protein trajectories

Prepare simulation files.
Conduct 100 ps NVT and 200 ps NPT simulations.
while iteration is not reaching the maximum round do
Align trajectories and extract Cartesian coordinates.
Train a VAE model.
Fit latent space with a non-parametric multivariate kernel density estimator.
Select top 10 lowest-probability samples based on CDF and get seed structures.
Conduct 100 ps simulation for each seed.
if mean RMSD is converged then
Stop iteration.
end if
end while

The LAST algorithm is summarized in Algorithm 1 with
codes that are freely available at the GitHub site of https://
github.com/smu-tao-group/LAST.

2.4. Structural Dissimilarity Sampling. Structural
dissimilarity sampling (SDS) is an efficient method to quickly
expand protein conformational distributions toward unvisited
conformational spaces. Similar to LAST, SDS iterates between
(1) arrangement of seed structures for a diverse distribution in
the frontiers of conformational regions and (2) conduction of

https://doi.org/10.1021/acs.jcim.2c01213
J. Chem. Inf. Model. 2023, 63, 67—75
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(A)

(B)

Figure 2. Structures of (A) ADK and (B) VVD. ADK is composed of a CORE domain, an LID domain, and an NMP domain. LID—CORE and
NMP—CORE angles are calculated by four vectors to represent protein conformations. Both proteins are colored at the secondary structure level

using ChimeraX.
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Figure 3. Seed structure distribution on the low-dimensional protein representations. (A, B) ADK protein conformations are represented in LID—
CORE and NMP—CORE angle vectors. (C, D) VVD protein conformations are represented in RMSDs with regard to the native dark and native
light states. Seed structures are represented in red stars. The analysis in these plots was carried out after seven rounds of LAST simulations for

illustration purposes.

additional MD simulations based on these selected structures.
In this work, SDS was applied to each protein system and the
sampled protein conformational spaces were compared with
the LAST and c¢cMD results under the same simulation time.
The SDS was implemented using scripts from Zhang and
Gong17 under https://github.com/Gonglab-THU-MD/
Frontier-Expansion-Sampling.

3. RESULTS

Four structures of two protein systems (ADK and VVD) were
prepared for MD simulations, as described in Section 2.2. For
each protein structure, 100 ps of NVT and 200 ps of NPT

70

simulations were conducted. During the iterative process, all
previous simulations were aligned to the first frame with
Cartesian coordinates of heavy atoms being extracted as a
feature vector to represent protein conformation. Afterward, a
variational autoencoder model was trained. Ten seed structures
were selected with an additional 100 ps simulation starting
from each of them. Therefore, each iteration takes a 1 ns
simulation time.

ADK protein is composed of a rigid CORE domain, a lid-
shaped ATP-binding domain (LID), and an AMP-binding
domain (NMP). Many computational studies have shown
ADK to carry out large conformational transitions between the

https://doi.org/10.1021/acs.jcim.2c01213
J. Chem. Inf. Model. 2023, 63, 67—75


https://github.com/Gonglab-THU-MD/Frontier-Expansion-Sampling
https://github.com/Gonglab-THU-MD/Frontier-Expansion-Sampling
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01213?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01213?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01213?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01213?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01213?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01213?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01213?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jcim.2c01213?fig=fig3&ref=pdf
pubs.acs.org/jcim?ref=pdf
https://doi.org/10.1021/acs.jcim.2c01213?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Journal of Chemical Information and Modeling

pubs.acs.org/jcim

1 ns simulation

5 ns simulation

170
160
150
140
130

120

170

LID angle (°)

160
150
140

130

120

70

7 5
NMP angle (°)

® LAST

40 45 50 55

cMD

Figure 4. Comparison of ADK conformational spaces of LAST and ¢cMD. Protein conformations are shown in blue at iterations 1, 5, 10, and 15 in
the LAST method. Protein conformations produced by ¢cMD are shown in gray with the same simulation time. In each round, LAST explored a
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(black solid line) methods. LAST took 22 and 30 iterations to complete for ADK and SDS proteins, respectively. In each system, SDS and cMD
simulations were conducted under the same simulation time. In the ADK conformational space, LAST explored two paths to the open and closed

states, while SDS explored one path toward the open state.

closed state to the open state during the ATP—ADP
catalyzation process.””** Four vectors that form NMP—
CORE and LID—CORE angles, as shown in Figure S1, have
been widely used to characterize ADK protein conformation.
VVD is a light-oxygen-voltage domain that undergoes global
conformational changes upon perturbation. VVD is shown to
be flexible in the native light state and relatively stable in the
native dark state.”* ADK and VVD structures are illustrated
using ChimeraX™” (Figure 2).

Proper low-dimensional protein representations are needed
to evaluate the quality of seed selection. In the current study,
ADK protein structure is projected to LID—CORE and NMP—
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CORE two-dimensional (2D) angle plots. We followed the
same reside selection rule to calculate vectors and angles.24 For
the VVD structure, 2D root-mean-square deviation (RMSD)
with reference to the native dark and light structures was used
to show the sampled protein conformational space.

Both the angle plot in ADK and RMSD plot in VVD were
used to display the protein conformation of seed structures
(Figure 3). In each subplot, seed structures are highlighted as
red stars. In two metastable ADK conformations (Figure
3A,B), seed structures are mainly located in the less sampled
regions with small or large LID/NMP angles. This indicates
that the variational autoencoder can capture the structural

https://doi.org/10.1021/acs.jcim.2c01213
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differences of protein conformations within the learned latent
space. In the native dark and native light VVD conformations
(Figure 3C,D), seed structures are also shown to be evenly
distributed in the boundary of protein conformational space
defined by RMSD to two native VVD structures.

To compare the effectiveness of LAST to conventional
molecular dynamics simulations, the sampled protein con-
formational space in each round of the LAST method is
displayed together with cMD sampled conformations. Figure 4
shows the protein conformations in 1, S, 10, and 15 ns for both
LAST and cMD. It is shown that under the same simulation
time, LAST can explore more protein conformations than
cMD. Moreover, the trained variational autoencoder can
consistently learn a low-dimensional protein representation in
the latent space, regardless of the growing number of
simulations and changing shape of conformational space and
guide MD simulations to explore less sampled regions. In
contrast, there are limited new conformations being explored
in <MD simulations from 10 to 15 ns, indicating that it might
be trapped in a local energy minimum.

We continued the LAST simulation of ADK until the
convergence of LAST. For comparison, both SDS and <cMD
simulations were conducted under the same simulation time.
The sampled protein conformational spaces are shown in
Figure SA. The LAST sampling method took 22 iterations (22
ns simulation time) and explored two paths from the
metastable state to the two native states. This aligns with the
computational finding that ADK protein undergoes conforma-
tional transitions between the open and the closed states.*®
Moreover, the sampled conformational space in LAST spans in
the intermediate regions between the closed and open states,
with some coverage in the open state and no coverage in the
closed state. Meanwhile, SDS only explored one path toward
the open state, and cMD mostly sampled the overlap of LAST
and SDS methods. The sampled two transition pathways align
well with a previous study,” in which a 200 ns AMBER
simulation was conducted, showing that the LID-open NMP-
closed metastable ADK structure could visit both native open
and closed states. The same experimental setting was applied
to the open and closed states of ADK protein. While these two
states are stable, LAST can still cover the majority of cMD
results and sample more conformations when compared with
SDS simulations, as shown in Figure S2. The sampled
conformations in the LID-open NMP-closed metastable
ADK structure were also projected using the first two
components in PCA (Figure S3). In contrast to Figure SA,
the SDS sampled conformations do not fully overlap with
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LAST. Instead, both methods sampled different conforma-
tional regions and are complementary to the cMD results.

There are 120 ADK structures in the PDB. The minimum
RMSDs in LAST and SDS produced trajectories that were
calculated with reference to each ADK structure and are listed
in Table S2. More than two-thirds (84 out of 120) of
minimum RMSDs in LAST are less than those in SDS. On
average, the minimum RMSD in LAST is 0.07 A less than that
in SDS. These indicate that the LAST method is comparable to
SDS and allows the structural integrity of protein to be
reasonably maintained.

For the VVD system, LAST simulation took 30 iterations
(30 ns simulation time) to converge. The conformational space
is illustrated in Figure 5B. SDS and LAST methods sampled
similar conformational spaces and both covered a majority of
cMD sample regions. To compare the efficiency of LAST and
cMD methods, this cMD simulation was continued while this
2D RMSD map was being monitored. It took 100 ns
simulation time for cMD simulation to have a similar space
shape to LAST. The initial 30 and 100 ns simulations are
displayed in Figure S4B. In terms of the MD simulation time,
LAST was three times faster than cMD. Considering the VAE
training time, the overall time cost for LAST was around 40%
of ¢tMD, with all computations carried out on a Tesla P100
GPU node.

The mean RMSDs with regard to the starting protein
structure in each iteration were calculated for both ADK and
VVD systems and are shown in Figure 6. Mean RMSDs are
presented with black lines, and the standard deviation is shown
in red lines for each round. The maximum and minimum
RMSD values are shown as the upper and lower bounds in the
colored regions. Currently, we set the patience as 5: the
iteration loop stops if the maximum mean RMSD does not
increase in five consecutive rounds. For the simulation in the
ADK system, RMSD starts with 2 A, gradually increases to 3.5
A, and stops at iteration 22. In contrast, the RMSDs in the
VVD system are smaller and the total simulation lasts longer
with a total of 30 iterations.

4. DISCUSSION

In this study, we proposed a new adaptive sampling method to
explore protein conformational space. LAST iteratively trains a
VAE model using previous simulations, selects seeds that are
structurally different from the sampled conformations, and uses
them to initiate additional short MD simulations. LAST differs
from previous methods in seed selection design, where the
lowest-probability samples are selected and treated as seeds on
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the latent space of VAE. VAE has been demonstrated to be
effective in learnin% a low-dimensional protein representation
in the latent space.””””*® The embeddings in the latent space
are known to keep a distance similarity: if two protein
structures are similar in structure, their embeddings in the
latent space are close to each other. With this nature, the
lowest-probability samples on the latent space are worth
further exploration through MD simulations, as their
corresponding protein structures deviate from the most
common structures. In LAST, these low-probability samples
are treated as seed structures to conduct additional MD
simulations.

The normality of latent space provides a new opportunity for
seed selection. However, the latent space does not strictly
follow a normal distribution, as shown in Table S1 and Figure
SS. This is mainly because of the relatively strong emphasis on
reconstruction loss and lesser emphasis on KL divergence
during VAE training. The reconstruction loss term controls the
quality of latent space data reconstruction (how well the VAE
can reconstruct a protein structure), and KL divergence term
constrains the distribution of the latent space (to what degree
the latent space needs to follow a normal distribution).
Therefore, to have a well-constructed and normal regularized
latent space, appropriate weights are needed to be set for both
terms. This is a challenging task with fine tuning by hand, as
the sample size keeps growing linearly with additional MD
simulations in each round. Therefore, instead of trying to find
weights to balance the reconstruction loss and KL divergence,
we allow the latent space to not strictly follow a normal
distribution and use a nonparametric multivariate kernel
density estimator to fit the latent space.

One potential problem is that the distribution of the latent
space might be skewed or kurtotic. In such cases, one side of
probability density function will have a long tail with low
values. This could lead to the situation that all selected seed
structures lie on the long tail side, and the corresponding
protein structures of these seeds might be similar to each other.
Seed gathering on one side of latent space distribution
decreases the chance to explore more structurally different
conformations and thus leads to a less efficient protein
sampling process. To partially overcome this issue, we used the
cumulative distribution function to select the lowest-proba-
bility samples: data points on the two sides of the CDF are
evenly selected. This improvement, as shown in Figure S6A,B,
prevents sampling similar seeds on the boundary of protein
conformational spaces.

Still, seed structures might be similar to each other.
Nontargeted PaCS-MD proposed a nonredundant selection
rule, which calculates pairwise RMSDs between the current
simulation cycle and seeds selected in all of the past cycles.”
Protein configurations with large RMSD are then selected as
new seeds in the current cycle. We took reference from this
idea when selecting seeds. The lowest-probability samples from
two ends of the estimated CDF are picked sequentially, while
the pairwise RMSDs to previously selected seeds are
calculated. We set the RMSD threshold as 1 A and require
that the RMSD values of the newly selected seeds should be
greater than the threshold. If not, LAST discards this sample
and moves to the next. The effect of this improvement can be
seen through the comparison of Figure S6B,C. Moreover,
LAST is a memory method: the selected seed structures are
stored for RMSD calculation in future iterations, which avoids
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repeated sampling in the same conformational region and
further improves the sampling efficiency.

For ADK, two angles with prior knowledge of its
conformational dynamics were chosen to reveal the sampling
efficiency. Similarly, RMSD values with reference to VVD
native dark and light structures, respectively, were used for the
same purpose. These preselected order parameters do not
reduce the generality of LAST method because they were not
used to develop VAE models. In the other words, the VAE
models are “unaware” and do not require this information.

There are some tuning parameters in the LAST sampling
scheme, including the dimensions of the latent space, the
number of seed structures, the RMSD threshold in seed
selection, the architecture of VAE model, and the number of
rounds in convergence. In LAST method, the seed structures
need to be selected in the frontier regions of conformational
space, which has been sampled. These so-called frontier
regions could not be easily identified in the Cartesian
coordinates. On the contrary, after being projected onto a
low-dimensional latent space, the frontier regions of the
conformational space representing existing simulations could
be easily identified based on the distribution of existing
simulations. Consequently, the seed structures for further
simulations could be chosen in these frontier regions in the
low-dimensional latent space. The latent space is one of the
hidden layers in a VAE model. Typically, its dimension is much
lower than the input dimension and is considered the
bottleneck. In this study, the latent space was set as 2D to
visualize, project, and compare high-dimensional protein
conformations. The performance of higher dimensions in the
latent space is worth further study. For the number of seed
structures, 10 seeds are selected in each round. This could be
changed under different protein systems and is subjected to the
available computing resources. Also, the MD simulation time
starting from seeds, currently set as 100 ps, can be adjusted
accordingly. However, it should be noted that this simulation
time should match the RMSD threshold: the simulation time
should not be too short with a large RMSD threshold. Given
that the conformational space of selected seeds is not likely to
be visited again, it is expected to have a reasonable simulation
time to fully explore the conformations in each additional MD
run. Besides, the number of hidden layers in the VAE model is
important to learn a useful latent space. Our previous finding
suggests that a VAE model with three hidden layers is sufficient
to learn the ADK protein conformations. Larger model
architectures do not have a significant improvement but
instead will lead to longer training time. The proper
architecture of VAE, in terms of the number of hidden layers
and the number of dimensions in the latent space, is worth
studying to provide general guidelines when dealing with
different protein families. In general, LAST method is
applicable in all protein systems. The implementation of
LAST method is similar regardless of whether the protein
systems contain nonprotein components. However, the user
needs to obtain appropriate force field parameters for the
system under simulation. Lastly, it is worth noting that the
convergence criterion used in this study does not represent the
“true” convergence of protein systems. The notion of “true”
convergence, as discussed in previous studies,**™** is elusive in
simulations. More appropriate criteria are needed for the
convergence signal in adaptive sampling, through either
numerical indicators or self-consistency checks.
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5. CONCLUSIONS

In this study, we present an adaptive sampling method, latent
space-assisted adaptive sampling for protein trajectories, to
accelerate the exploration of protein conformational spaces.
LAST iterates through variational autoencoder training, seed
selection, and additional short MD simulations. LAST differs
from previous methods in seed selection where the lowest-
probability samples in the learned latent space are selected and
treated as seed structures. LAST method is compared with
SDS and cMD using ADK and VVD protein systems, each with
different low-dimensional representations. In both systems,
LAST can capture the key protein characteristics and select
seeds that lie in the boundary of conformational space. For
ADK simulations, LAST explored two transition paths that are
in agreement with previous findings. For VVD simulations,
LAST is three times faster than conventional MD for exploring
the same conformational regions. To conclude, LAST provides
an alternative method for efficient adaptive sampling,
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