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ABSTRACT: Allosteric mechanisms are commonly employed
regulatory tools used by proteins to orchestrate complex
biochemical processes and control communications in cells. The
quantitative understanding and characterization of allosteric
molecular events are among major challenges in modern biology
and require integration of innovative computational experimental
approaches to obtain atomistic-level knowledge of the allosteric
states, interactions, and dynamic conformational landscapes. The
growing body of computational and experimental studies
empowered by emerging artificial intelligence (AI) technologies
has opened up new paradigms for exploring and learning the
universe of protein allostery from first principles. In this review we
analyze recent developments in high-throughput deep mutational
scanning of allosteric protein functions; applications and latest adaptations of Alpha-fold structural prediction methods for studies of
protein dynamics and allostery; new frontiers in integrating machine learning and enhanced sampling techniques for characterization
of allostery; and recent advances in structural biology approaches for studies of allosteric systems. We also highlight recent
computational and experimental studies of the SARS-CoV-2 spike (S) proteins revealing an important and often hidden role of
allosteric regulation driving functional conformational changes, binding interactions with the host receptor, and mutational escape
mechanisms of S proteins which are critical for viral infection. We conclude with a summary and outlook of future directions
suggesting that AI-augmented biophysical and computer simulation approaches are beginning to transform studies of protein
allostery toward systematic characterization of allosteric landscapes, hidden allosteric states, and mechanisms which may bring about
a new revolution in molecular biology and drug discovery.
KEYWORDS: allosteric mechanisms, artificial intelligence, protein allostery, first principles, high-throughput deep mutational scanning,
allosteric drug design, machine learning, structural prediction methods, SARS-CoV-2

■ INTRODUCTION
Allosteric mechanisms are often used to control the activity of
enzymes, ion channels, and other proteins, and are essential for
the regulation of metabolic pathways, signal transduction, and
other cellular processes. Allosteric regulation can also be used
to regulate gene expression, as well as the production of
hormones, neurotransmitters, and other molecules.1−5 In
general, allosteric interactions involve the binding of a ligand
to a protein at a site other than its active site, causing a cascade
of conformational changes and/or dynamic rearrangements in
the system that affect the protein’s activity as a result. Despite
significant research efforts and continuous progress in
understanding the diversity and complexity of allosteric
molecular events, the interplay and balance of thermodynamic
and kinetic factors underlying molecular mechanisms of
protein allostery are often difficult to monitor and characterize
due to the dynamic nature of these processes and presence of

short-lived hidden allosteric states involved in the regulation.
Allosterically regulated proteins employ diverse molecular
mechanisms to propagate various perturbations such as ligand
binding or mutations, but the allosteric phenomenon is
believed to be primarily driven by a thermodynamic principle
that binding of an effector ligand stabilizes the active state over
the inactive state and removing the effector ligand reverses this
effect.6−8 A conformational change in one state can affect the
stability of other states, leading to altered binding and/or
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catalytic activities. The dynamic equilibrium between the
inactive and active allosteric protein states can be often affected
and selectively modulated through activated mutations, by
post-translational modifications, and via binding with allosteric
modulators and proteins. To understand the underlying
principles of allosteric regulation, it is important to characterize
the thermodynamic, structural, and dynamical properties of the
different conformational states, as well as their interconversion
pathways. While mechanistic studies of allosteric regulation are
often focused on thermodynamic characterization of the
functional states and their equilibrium, there has been an
increasing realization of the critical role of the intrinsic protein
dynamics in driving allosteric events through redistributions of
dynamically modulated functional motions rather than
population shifts involving appreciable structural transforma-
tions.9,10 These allosteric models have explained the functional
interplay between allosteric effects and conformational
dynamics in a variety of dynamic protein systems. Hierarchical
approaches combined multiscale equilibrium and nonequili-
brium simulations with biophysical experiments to characterize
remodeling of the free energy landscapes, detect allosteric
functional states, and dissect signal transmission mecha-
nisms.11−19 It was proposed that population-shift based
structural allostery and dynamically driven allostery that are
often discussed as limiting scenarios of allosteric mechanisms
and long-range communication can coexist and operate
synchronously to adapt the protein free-energy landscape to
incoming signals.
Probing and understanding the effect of perturbations lies at

the core of many fundamental challenges and technologies of
modern biology including allosteric phenomenon.20 Perturba-
tion-based physical approaches21−24 emphasize the importance
of simulated forces for probing of protein dynamics and
prediction of phenotypic responses in complex biological
systems. Combined with biophysical simulations and dynamic
network models of proteins, these approaches can provide
insightful mechanistic details of the underlying molecular
mechanisms, quantify the protein response to various
perturbations, and guide the identification of allosteric
interactions, regulatory sites, and long-range communica-
tions.25−27 To describe the multipartite organization and
dynamic nature of biological systems regulated by allosteric
regulatory events, the information-based theory of signal
propagation28−30 and dynamic network flow models that
operate through a stochastic walk on the dynamics of the
network31−33 have been developed revealing details of
multiscale dynamic relationships and the network community
structure associated with functionally relevant protein changes.
Stochastic Markov state models (MSMs) have emerged as a

robust and physically rigorous framework for characterization
of hidden allosteric states, detection of cryptic allosteric
pockets, and describing the kinetics of transitions between
functional states during allosteric events.34−38 Combined with
molecular dynamics (MD) simulations, MSM approaches can
provide detailed network connectivity maps of states on the
free energy landscape and estimate the effect of allosteric
perturbations on the conformational equilibrium and kinetics
of allosteric transitions.
Another challenge in quantitatively characterizing allosteric

proteins is understanding the underlying mechanisms by which
they respond to external signals. Allosteric proteins interact
with their environment in complex ways, and the precise
details of these interactions are often not well-understood. In

order to accurately measure and characterize the behavior of
allosteric proteins, it is important to gain a better under-
standing of the underlying mechanisms of their behavior.
Current techniques for studying allosteric proteins are often
limited in their ability to capture the full range of dynamic
behavior exhibited by allosteric proteins. The development of
new and improved tools for studying allosteric proteins is a key
challenge in quantitatively characterizing these dynamic
systems. The interdisciplinary structural biology strategies
that exploited synergies between X-ray high-throughput
crystallography, cryo-electron microscopy (cryo-EM), nuclear
magnetic resonance spectroscopy (NMR), biophysical ap-
proaches, and multiscale computational methods are beginning
to show a considerable potential in addressing some of these
challenges and uncovering the invisible dynamic aspects of
allosteric protein functions at the atomistic level.
This review is focused on a critical analysis of the latest

developments in the field, marked by the emergence of
innovative computational and experimental approaches that
can dissect important principles of allosteric regulation and
advance atomistic characterization of allosteric states, inter-
actions and mechanisms from a unified perspective. In the next
chapters we discuss recent developments in deep mutational
scanning and mapping of allosteric energy landscapes;
applications of Alpha-fold structural prediction methods for
studies of protein dynamics and allostery; new developments
in integrating enhanced sampling techniques and machine
learning (ML) for characterization of dynamics and allostery;
and recent advances in the experimental structural biology and
biophysical approaches for studies of allosteric systems and
regulatory mechanisms. We also highlight recent computa-
tional and experimental studies of SARS-CoV-2 spike proteins
revealing complex dynamics and allosteric mechanisms under-
lying functional activities and virus transmission as well as
integrative studies that discovered and validated previously
unknown allosteric cryptic sites and allosteric modulators. We
conclude with the outlook and future directions presenting our
perspective on future developments in the field and speculate
what methods and sources of information may be leveraged in
the future to develop a unified framework for modeling of
protein dynamics and allostery.

■ DEEP MUTATIONAL SCANNING AND ALLOSTERY:
HIGH-THROUGHPUT BIOCHEMICAL TOOLS
PARTNER WITH SIMULATIONS AND AI FOR
MAPPING OF ALLOSTERIC LANDSCAPES AND
REGULATORY HOTSPOTS

To probe principles of allostery, molecular mechanisms of
allosteric regulation must be investigated for protein systems
where allosteric signatures are intimately linked with
phenotypic responses that can be identified in biophysical
studies. The recent biochemical studies extensively exploited
advances in deep mutational scanning (DMS) methodology to
map allosteric energy landscapes, investigate the molecular
nature of allostery at the residue level, and identify the
allosteric hotspots or residues critical for allosteric signal-
ing.39−43 The DMS approach has been a powerful tool for
examining allosteric effects by systematically measuring the
impact of mutational perturbations on various phenotypes
using high-throughput experiments.41−43

A general approach for quantifying mutational effects for
multiple molecular phenotypes using multidimensional DMS
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enabled a comprehensive characterization of allosteric
mutations in protein domains and produced comprehensive
atlases of allosteric communications, distinguishing the effects
of mutations on allostery, binding, and protein stability.41 By
using innovative implementations of protein-fragment com-
plementation assays, this pioneering study allowed for a
detailed characterization of the biophysical effects of mutations
by quantifying multiple molecular phenotypes in multiple
genetic backgrounds and fitting the data into thermodynamic
models using neural networks. Another study reported a large-
scale analysis of the genotype-phenotype landscape for the lac
repressor from Escherichia coli LacI enabling a quantitative map
of the effect of amino acid substitutions on LacI allostery.42

This study showed that in general allosteric phenotypes can be
quantitatively predicted using additive approximations and
neural network-based models. However, allosteric effects may
also operate via less-conventional mechanisms that can
synchronize and amplify combinations of silent amino acid
substitutions to induce allosteric changes. This investigation
reinforced the notion that allostery is a distributed biophysical
phenomenon governed primarily by the ensemble-defined
remodeling of the energy landscape and the thermodynamic
free energy balance with additive contributions from many
residues and interactions.42 To examine whether allosteric
mutations are abundant, structurally localized, or distributed in
nature, an elegant saturation mutagenesis study of a synthetic
allosteric system in which dihydrofolate reductase (DHFR) is
regulated by a blue-light sensitive LOV2 domain was

conducted.43 By assessing the impact of 1548 viable DHFR
single mutations on allostery, this study established that fewer
than 5% of mutations could exhibit a statistically significant
influence on allostery, and that allostery-disrupting mutations
were proximal to the insertion site, while allostery-enhancing
mutations appeared to be structurally distributed and enriched
on the protein surface.43 Importantly, this DMS profiling study
revealed that engineering of mutations in weakly conserved
and structurally distributed sites of the protein could lead to
diverse evolutionary strategies for optimization and manipu-
lation of allosteric regulation. Moreover, these fascinating
experimental insights into allosteric mechanisms disclosed
various weaknesses of computational approaches that may
often overemphasize the role of structurally stable allosteric
hotspots, while allostery may be in fact rescued and enhanced
through distributed cooperative effects of a considerable
number of weakly conserved flexible sites.
DMS analysis of the molecular chaperone Hsp90 encoded

14,160 amino acid variants and quantified growth effects under
standard conditions and under various stress conditions.44 The
results showed that different environments could impose
unique functional demands on the Hsp90, where function-
beneficial mutations occupied the protein surface and were
often localized near interfaces with the binding partners.
Moreover, mutations that disrupt binding to certain clients can
lead to the reprioritization of others, providing a roadmap for
rational rewiring of cellular networks.44 Interestingly, this
comprehensive DMS mapping of the Hsp90 fitness maps

Figure 1. (A) An overview of mutability landscape mapping approaches. The first approach is characterization of a defined collection of single
mutants, and the second is DMS. In DMS the diversity in the protein is created through generation and expression of random mutants followed by
high-throughput sorting of active mutants from inactive mutants using flow cytometry, phage display, or growth selection. This allows for the
enrichment of active mutants. (B) The heatmap obtained from DMS analysis allows for comprehensive mapping of the phenotypic effects, for
example, the decreased, neutral, or increased enzymatic activity, the effect of mutations on protein folding, and the mutational effect on binding,
allowing for the identification of allosteric output of mutations and detection of allosteric hotspots. (C) A schematic description of dynamic
network analysis of mutations mimicking DMS by monitoring the perturbation-induced changes in rewiring and community modularity of the
graph-based residue interaction networks.
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revealed patterns that were generally consistent with the
computational analysis of allosteric changes of the molecular
chaperone, suggesting that mutations affecting client binding
can be intimately involved in modulation of the Hsp90
allosteric communications.45,46

The ease and proliferation of DMS tools in modern
biochemical studies enabled a systematic characterization and
comparison of allosteric hotspots across multiple homologous
proteins allowing for in-depth analysis of allosteric effects in
protein families (Figure 1). Using computational protein
design, single-residue saturation mutagenesis and random
mutagenesis, along with multiplex assembly, DMS was
employed to build a more comprehensive catalog of Lac
repressor allosteric variants comparable in specificity and
induction to wild-type LacI with its inducer.47 An insightful
review of DMS and high-throughput mutational methods
emphasized the transformative role and advantages of these
emerging technologies for understanding of the allosteric
phenomenon and their unique ability to comprehensively map
the functional landscape at the resolution of individual
residues.48 Furthermore, DMS can be used for profiling
double mutants that disrupt or restore normal allosteric
functions. Lastly, this analysis highlighted the large scale and
data-rich nature of the DMS output that is perfectly suited for
data mining and predicting residues that are exclusively
important for allostery using ML models.48 By integrating
computational design, high-throughput screening along with
structural and biophysical analysis of an allosteric transcription
factor, the recent study showed that epistatic interactions can
shape up the protein fitness landscape and allosteric functions,
leading to new binding specificity.49

DMS experiments were combined with molecular dynamics
(MD) simulations and network analysis into a function-centric
approach50 that examined the underlying functional landscape
of a bacterial transcription factor showing how disrupted
allosteric switches can be restored through functional plasticity
and redundancy of flexible positions, suggesting the role of
diverse and broad ensembles of mutational communication
pathways in propagating allosteric phenotypic effects (Figure
1). This seminal study revealed that residues critical for
allosteric signaling are often weakly conserved leading to
multiple solutions to the thermodynamic principle of
cooperativity, in contrast to the view of a finely tuned
allosteric residue network maintained under evolutionary
selection. In a subsequent study, DMS of four homologous
bacterial allosteric transcription factors produced a large pool
of data that was leveraged by deep learning (DL) to build a
robust predictor of allosteric hotspots revealing that regulatory
sites mediating allostery are widely distributed on the protein
rather than being restricted to specific pathways linking the
allosteric and active sites.51 Moreover, a model trained on one
protein can predict hotspots in a homologue, demonstrating
that global structural and dynamic properties are typically
strong predictors of allosteric importance for a given residue
than local and physicochemical properties. Engineering of
allosteric functions and regulation via limited number of key
mutations were demonstrated by the analysis of the malate
(MalDH) and lactate dehydrogenase (LDH) superfamily in
which a few key mutations induced a reorganization of the
conformational landscape rendering the emergence of allostery
in LDH proteins. which we targeted for investigation by site-
directed mutagenesis.52 The recent advances in DMS tools and
rapid emergence of multiplexed (pooled) screens producing a

large number of mutational perturbations and measurements in
proteins using a single-pot experiment represent a considerable
breakthrough in revealing allosteric functional landscapes while
supplying ML tools with invaluable data sets to manipulate
allosteric functions and engineer novel allosteric proteins.

■ ALPHAFOLD, PROTEIN ENSEMBLES AND
ALLOSTERY: PAVING THE WAY FOR THE NEXT AI
REVOLUTION IN MOLECULAR BIOLOGY

Among the emerging trends in studies of protein structure and
dynamics is the growing realization and rapidly expanding
efforts to develop a new generation of ML approaches that
leverage the wealth of experimental and simulation data for
autonomous assessment of dynamic events and regulatory
mechanisms. The remarkable success of advanced ML
methods in protein structure modeling is exemplified by
achievements of AlphaFold2 (AF2) that leverages covariation
and representations of amino acid contacts on graph neural
networks to yield a robust DL framework that trains on the
sequences of homologous proteins to predict a single accurate
structure for all sequences.53−55 The AlphaFold database,
hosted at EMBL-EBI (https://alphafold.ebi.ac.uk/), provides
free access to more than 200 million protein structure
predictions�a remarkable advancement in structural biology
that was inconceivable even several years ago.56 A number of
insightful reviews highlighted the key shortcomings and
limitations of the AF2 technology in resolving the looming
computational biology challenges as the predicted structural
models remain static and are unable to directly describe
functionally relevant dynamic changes in protein systems and
allosteric signaling mechanisms.57−59 Nussinov and colleagues
emphasized that for understanding of the regulatory
mechanisms the AF2 predicted structures need to be
accompanied by their representative ensembles and relative
populations that are essential for quantifying allosteric
phenomena�a formidable and ambitious task that is now
knocking on the door to test the limits of artificial intelligence
(AI) technologies.59

In the current review we highlight some of the most recent
“post-Alphafold2” developments that leveraged achievements
in structure prediction to develop new modeling frameworks
that attempt to extend beyond predicting a single protein
structure and toward accurately capturing protein dynamics
and regulatory mechanisms from first principles. Several latest
studies outlined a simple and yet plausible strategy that
leveraged a multiparameter complexity of the AF2 method-
ology to predict different functional conformations using a
benchmark set of topologically diverse transporters and GPCR
proteins�a first step toward adapting the powerful ML
apparatus for modeling of protein ensembles and popula-
tions.60,61 By varying different parameters of the predictor such
as the number of models generated, the number of known
structures of protein homologues as templates, and by
counterintuitively reducing the depth of the input multiple
sequence alignments by stochastic subsampling, this study
reported a robust generation of multiple functional con-
formations required for protein activities and regulation61 The
results of this study indicated that AF2 parameters can be
manipulated in a specified manner to accurately model
multiple functional conformations for transporters and
GPCRs whose structures were not used in the training set. A
more general approach leverages AF2 to model alternative
functional conformations and is benchmarked on canonical
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examples of protein flexibility, showing promise in recapitulat-
ing the conformational landscape of membrane proteins.62 In
this approach, the initial AF2-predicted models are scanned to
identify interaction surfaces within the structure, followed by
modifying MSA profiles using in silico alanine mutagenesis and
forcing the attention neural networks within the AF2 engine to
uncover new residue contacts and promoting more heteroge-
neous coevolutionary couplings of protein residues to produce
alternative protein conformations. Integration of double
electron−electron resonance (DEER) spectroscopy and
ensembles of multiple structural models obtained by the
modified AF2 showed a good agreement with the experimental
conformational dynamics.63 Despite a significant and some-
what unexpected success of these AF2 adaptations, a
methodological “tweaking” of the AF2 architecture may be
sensitive to the protein families and evolutionary patterns
among homologies sequences, indicating a need for the
development of dynamics-centric neural networks and more
systematic probing and adaptation of the AF2 architectures for
explicit exploration of conformational ensembles.
Consistent with these arguments, several most recent studies

indicated that remarkable structure prediction capabilities of
AF2 cannot be readily expanded to learn and predict the
conformational landscapes and allosteric conformational
changes that drive protein functions and regulation. Using a
curated collection of unbound (apo) and bound (holo)
structures from the database of Conformational Diversity in
the Native State of proteins (CoDNaS) it was found that AF2
predictions are biased toward a single conformer and cannot
capture conformational diversity present in the apo and holo
pairs with the same precision that can be estimated for a single
representative conformation of a given protein.64 Interestingly,
AF2 predictions single out the holo protein form in 70% of the
studied cases, but are unable to reproduce conformational
diversity through assessment of the top predicted conformer
models, suggesting that AF2 neural networks cannot
simultaneously predict the protein structure and the conforma-
tional ensemble. In another study, the performance of AF2 was
tested on a set of 98 fold-switching proteins with at least two
distinct tertiary structures, revealing that 94% of predictions
captured only one of the experimentally determined
conformation but often failed to capture the other functional
states among top predicted conformers.65 By extracting AF2
predictions for the wild-type and single protein mutants, the
predicted AF2 metrics were correlated with the experimental
protein stability changes for 976 mutations in 90 proteins from
the Thermo-Mut Database, showing weak or no correlation
with the experimental changes of protein stability.66 At the
same time, AF2 predictions of ligand binding sites, protein
disordered regions, and protein−protein interactions are
superior to the existing tools even though AF2 networks
were not initially trained on structures of protein−protein
complexes.67−69 Hence, while AF2 tools have excelled in
predicting static structures of proteins, it remains unclear how
these neural networks should be tweaked to predict conforma-
tional ensembles and identify allosteric states including low-
populated dynamic functional conformations involved in
allostery. The three-track network architectures developed by
Baker and colleagues that incorporate and manipulate neural
networks to transform and integrate sequence information with
the 2D distance maps and 3D structure throughout the
training have been equally powerful for protein structure
prediction and provide architectural flexibility that could be

potentially adapted for prediction of dynamics and allosteric
states.70 Recent illuminating AI-driven protein design studies
showed that deep networks trained to predict native protein
structures from their sequences can be inverted to design new
proteins, and this conceptual strategy could be potentially
reformulated and applied to model conformational ensembles
of the same protein.71−73 These approaches developed by the
Baker lab including constrained hallucination to optimize
sequences for structures containing the desired functional
site71 and an inpainting approach that designs a viable protein
scaffold around a given functional site72 may provide a
platform for “dialing in” sequence-inferred variability of the
predicted structures as a proxy for rational modeling of protein
ensembles.
NMR spectroscopy technologies offer new powerful means

to characterize protein dynamics and detect hidden allosteric
conformations74−77 which in combination with AF2 modeling
could be a promising direction for accurate prediction of
conformational dynamics, allostery, and detection of rare
states, but these enhancements of deep learning networks
require the enhanced databases of NMR data for training.78 An
alternative direction is a systematic exploration of AI systems
and ML approaches to capitalize on the wealth of computa-
tional and experimental information about protein dynamics
and conformational ensembles. These approaches have a
potential to become a unifying data-centric platform for
synthesizing advances in theory and experimental technologies,
leading to the development of robust and efficient computa-
tional models and expert systems for prediction of allosteric
effects in protein systems.

■ EXPANDING THE HORIZONS OF
EXPERIMENT-GUIDED MOLECULAR
SIMULATIONS FOR STUDIES OF PROTEIN
ALLOSTERY WITH NETWORK AND AI MODELS:
COMING TO RESCUE YOU OR REPLACE YOU?

The recently emerging directions in molecular simulations of
biomolecular systems and characterization of conformational
dynamics reflect the arrival of the new era of dynamic
structural biology exemplified by the increasing cooperation of
cryo-EM and single molecule FRET techniques with the
enhanced simulation approaches and AI/ML models. The
development of enhanced sampling techniques for exploration
of conformational landscapes with the aid of neural networks
and DL architectures provided a significant impetus for studies
of protein allostery and allosteric mechanisms. ML approaches
were employed to facilitate exploration of conformational
landscapes using MD simulations via optimal selection of
reaction coordinates,79−83 enhanced conformational sampling
by reinforcement learning,84,85 goal-oriented active learning,86

and more recently by autonomous generation of the
equilibrium ensembles using Boltzmann neural network
generators.87 A recent review summarized the fundamentals
of generative ML applications for exploring the free energy
surfaces and kinetics of proteins.88 Here, we highlight several
recent impactful developments in facilitating “autonomous”
enhanced sampling of protein systems in which ML is
deployed to learn the representations and distributions of
biasing potentials as well as physics-based thermodynamic and
kinetic constraints to drive a more efficient exploration of the
conformational landscapes and prediction of functionally
relevant dynamic states. By combining DL and biased MD
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simulations, physically meaningful collective variables can be
determined resolving the bottlenecks that often hinder the
reliable characterization of conformational transitions and rare
events.89 ML together with the variationally enhanced
sampling method allowed for learning and optimization of
sampling-biasing potentials that can be represented in the form
of neural networks.90 Using the principle of variational
inference implemented through deep neural networks and a
predictive information bottleneck concept, a recently intro-
duced framework leverages short MD simulations to estimate
the reaction coordinates and perform iterative biased
simulations that can subsequently enhance exploration of
conformational landscapes and reliable inference of the
associated thermodynamic and kinetic characteristics of the
system.91,92 Moreover, AI-based State Predictive Information
Bottleneck (SPIB) approach can reliably learn a reaction
coordinate via a deep neural network even from short and
under-sampled trajectories.93 Further developments of these
concepts produced a path sampling approach that integrates
generic thermodynamic or kinetic constraints into long short-
term memory (LSTM) networks to accurately learn time series
such as MD trajectories for systems from different application
domains.94 Going forward, the developments of these
integrative biophysical approaches that leverage AI and ML
tools to represent physics-based thermodynamic and kinetic
drivers of efficient sampling in the form of neural networks
would have significant implications for “autonomous” mapping
of conformational landscapes, monitoring of allosteric changes,
and detection of functional allosteric states.
MSM approaches are powerful tools for exploring long-time

dynamic changes underlying the function of many allosterically
regulated proteins, allowing for detailed network maps of
functional states on the conformational landscape and
quantitative analysis of the effect of perturbations on the
thermodynamics and kinetics of allosteric transitions. How-
ever, the application of MSMs to characterize functional
conformational changes in highly dynamic protein systems
remains challenging due to heterogeneity of localized structural
changes involved in allosteric transformations. As a result, a

robust selection of structural features that can describe the
slowest dynamics of allosteric conformational changes is an
important bottleneck of the MSM approaches.95 The
automatic selection of physically meaningful and efficient
reaction coordinates using ML approaches allows MSM tools
to identify functionally relevant states which is the key to
proper interpretation of allosteric regulation mechanisms.95

The powerful synergy and complementarity of MSM
approaches and by employing ML-augmented tools for
detection of functionally relevant regions on the conforma-
tional landscapes and identification of structurally important
multidimensional reaction coordinates, AI models can facilitate
a more rapid advancement in the MSM methodologies with
broader applications in studying functional conformational
changes of proteins. In particular, ML models came to the
rescue by streamlining this analysis and allowing for automatic
selection of the essential features that can explain conforma-
tional changes and the distribution of metastable states.96,97

The ML approach that identifies feature importance via an
iterative exclusion principle can uncover versatile reaction
coordinates that account for the dynamics of the slow degrees
of freedom and allows for efficient sampling of the conforma-
tional landscapes and detection of hidden intermediate states
of the system.97

A variational approach to the Markov process neural
network (VAMPNets) provides a framework for predictions
of molecular kinetics using neural networks by combining the
steps of featurization, dimensionality reduction, discretization,
coarse-grained kinetic modeling, and generation of states into a
single end-to-end learning system.98 Combining VAMPNet
and graph-level dynamics with neural networks provided an
end-to-end framework termed GraphVAMPNet to efficiently
learn high resolution metastable states from the long-time scale
MD trajectories.99 This approach also employed an attention
learning mechanism to find the important residues for
classification of conformational ensembles into different
metastable states. A Gaussian mixture variational autoencoder
(GMVAE) can learn a reduced representation of the free
energy landscape of protein folding with highly separated

Figure 2. Autoencoder architecture for exploring protein (adenosine kinase ADK as an example) conformational space.106 Conformational space of
a target protein kinase obtained from simulations could be used as training data to construct an encoder module to project protein structures in
Cartesian coordinates onto the reduced space. The encoder module is designed with a decreasing number of neurons in hidden layers to encode
high-dimensional inputs to a low-dimensional latent space. The decoder module, with an increasing number of neurons in hidden layers, aims to
project latent space back to the protein kinase conformations.
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clusters that correspond to the metastable states during
folding.100 Using quasi-MSM (qMSM) based on the
Generalized Master Equation framework, only a handful of
functionally relevant metastable states can be obtained from
short MD simulations to facilitate the interpretation of
regulatory mechanisms associated with specific local and
global conformational changes.101 The key ensemble proper-
ties of biological systems can be learned from MD simulations
and described by easily interpretable metrics using a range of
different ML methods including principal component analysis
(PCA), random forests (RFs), and three types of neural
networks (NNs): autoencoders (AEs), restricted Boltzmann
machines (RBMs), and multilayer perceptrons (MLPs).102

This versatile framework enables efficient learning of the key
molecular features driving various biomolecular processes such
as allosteric conformational rearrangements of the soluble
protein calmodulin, the effect of ligand binding to a GPCR,
and the allosteric coupling of an ion channel VSD to a
transmembrane potential.
Several computational studies employed combinations of

enhanced simulation schemes and various ML models to
directly infer molecular determinants of allosteric changes and
ligand-induced ensemble changes in proteins. A ML-based
method (Linear Discriminant Analysis) was applied to reveal
differences between the apo and allosteric inhibitor-bound
ensembles in an automated way.103 Another ML method was
developed for the direct conformational ensemble comparison
and understanding of temporal relationships during allosteric
stimulation of hemagglutinin-neuraminidase.104 Zhou and
colleagues examined allosteric mechanism of Vivid (VVD)
protein as one light, oxygen, or voltage (LOV) domain using
an enhanced allosteric community model based on ML
models.105 Variational autoencoders (VAEs) have been
successfully employed to explore the conformational space
and allosteric transitions in adenosine kinase (Figure 2),
showing that the learned latent space can be used to generate
unsampled protein conformations and initiate additional MD
simulations to sample a transition from the closed to the open
states and explored hidden allosteric states.106 An autoencoder-
based detection method for characterization of ligand-induced
dynamic allostery used a comparison of time fluctuations of the
protein structures in the form of distance matrices obtained
from MD simulations.107

In this simple and elegant approach, the autoencoder was
first trained based on the time fluctuations of protein residues
in the apo form and used to inspect data in both the apo and
holo forms, showing that the ligand-induced allosteric changes
in dynamics can be identified and attributed to specific
reorganization of cooperative fluctuation motions among
residue pairs on a long-time scale. A neural relational inference
model based on a graph neural network used an autoencoder
architecture to explore the latent embedding of an allosteric
system and learn the long-range interactions and communica-
tions between distant sites in the ligand-induced allosteric
regulation of Pin1, conformational transition of SOD1 protein
and the activation of MEK1 by oncogenic mutations.108 By
requiring a dimensionality reduction algorithm to predict the
biochemical differences between protein variants instead of
assuming whether large structural changes are more important
than local changes, a new ML approach termed DiffNets uses a
self-supervised autoencoder to learn features of the conforma-
tional ensembles that are relevant to dissect the biochemical
differences between protein systems.109

MD simulations have been widely applied with smFRET
experiments to provide atomistic insights into the dynamic
behavior of biomolecules. A ML-based approach was proposed
which links MD simulations and single-molecule experiments
by constructing the initial MSM from a raw set of simulation
data and a learning step in which hidden Markov modeling is
performed to optimize the initial MSM using smFRET
measurement data.110 MD simulations can also be combined
with the information provided by smFRET experiments to
steer the simulation from one conformational state to the other
using accelerated or enhanced sampling techniques.111

Combined with biophysical approaches and multiscale
computational methods, NMR studies have been instrumental
in uncovering the invisible aspects of protein “life” including
mapping of allosteric landscapes for protein domains.112−116

Using a combination of triple-resonance NMR and computa-
tional network analysis, the allosteric effects of specific kinase
mutations and communication paths between regulatory
elements and catalytic sites can be characterized.117

NMR chemical shift covariance (CHESCA) and projection
(CHESPA) analyses118−121 can identify residue interaction
networks that show correlated changes in chemical shifts due
to allosteric perturbations caused by ligand binding or
mutations designed to modulate allosteric conformational
equilibria. Using statistical comparative analyses of the NMR
chemical shift variations elicited by the selected perturbations,
the CHESCA approach characterizes perturbation-specific
chemical shift patterns serving as distinctive signatures of
allosteric mechanisms. NMR studies of PKA and PKG kinases
revealed a wide range of noncanonical allosteric effectors
ranging from post-translational modifications to disease-related
mutations that can define diverse mechanisms of constitute
activation.122 The two newly proposed CHESCA-based
methodologies, called temperature CHESCA (T-CHESCA)
and CLASS-CHESCA, can prioritize predicted allosteric sites
and identify the core allosteric residues.123 These NMR
CHESCA adaptations are based on the invariance of core
inter-residue correlations to changes in the chemical shifts of
the active and inactive conformations interconverting in fast
exchange. Integration of NMR spectroscopy and surface
plasmon resonance revealed dynamic communication networks
of residues linking the ligand-binding site to the activation
interface in the glucocorticoid receptor and identified a specific
motif acting as a ligand- and coregulator-dependent allosteric
switch governing transcriptional activation.124 A recently
introduced NMR-guided directed evolution approach high-
lighted a new role of NMR in the selection process of
mutational libraries as this approach can identify locations of
the allosteric hotspots and mutations that can minimize
nonessential protein dynamics to achieve high catalytic
efficiency without a priori structural information.125

Solution NMR experiments and Gaussian-accelerated
molecular dynamics (GaMD) simulations examined the
structural and dynamic determinants of allosteric signaling
within the CRISPR-Cas9 HNH nuclease, advancing our
understanding of the allosteric pathway of activation.126 A
further integration of NMR with multimicrosecond molecular
dynamics (MD) simulations and graph-based network
modeling probed the effects of mutations on the structure
and allosteric communication within the CRISPR-Cas9 system,
showing that mutations responsible for increasing the
specificity of Cas9 alter the allosteric structure of the catalytic
HNH domain.127 Attempts are still underway to develop
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fundamental, if not ubiquitous, theory of protein allostery. The
recent study hypothesized that higher-order cooperativities
among multiple binding events rather than pairwise cooper-
ativities are needed to decipher protein allostery.128 This
graph-based method extends the idea of allosteric regulation to
systems with many distinct conformational degrees of freedom
and provides a conceptual framework for considering complex
allosteric systems with multiple distinct conformations as
versatile apparatus functioning to integrate information from
ligand binding.

■ ALLOSTERIC REGULATION MODELS AND
MACHINE LEARNING IN STRUCTURAL BIOLOGY
AND FUNCTIONAL STUDIES OF THE SARS-CoV-2
SPIKE PROTEINS AND ESCAPE MECHANISMS

Here, we discuss recent advances in integrative structural
biology of SARS-CoV-2 spike proteins, which highlight an
important and often hidden role of allosteric regulation driving
functional conformational changes, binding interactions with
the host receptor and mutational escape mechanisms of S
proteins which are critical for viral infection. The latest
developments in structural and computational studies of SARS-
CoV-2 S proteins also underscore the value of AI-based
approaches to unveil otherwise cryptic allostery states,
druggable allosteric sites, and regulatory mechanisms. The
rapidly growing body of structural and functional studies
established that the mechanism of SARS-CoV-2 infection that
involves conformational transitions between distinct functional

forms and activation of the viral spike (S) glycoprotein trimer
which consists of an amino (N)-terminal S1 subunit and
carboxyl (C)-terminal S2 subunit where S1 participates in the
interactions with the angiotensin-converting enzyme 2 (ACE2)
host receptor using the receptor-binding domain (RBD).129,130

Conformational transitions between the closed S state with
RBDs in the “down” conformation and the receptor-bound
open state in which RBDs can adopt an “up” conformation
were characterized using biophysical experiments suggesting
that mechanisms of conformational selection and receptor-
induced structural adaptation can often involve allosteric
stabilization and regulation.129,130 Recent experimental and
computational studies suggested that dynamic biological
functions of the SARS-CoV-2 S proteins and mutational
escape mechanisms can be rationalized and predicted by
examining critical molecular events related to viral infection
and dissemination through the lens of protein allostery and the
allosteric regulatory landscape of the SARS-CoV-2 S protein.
Conformational dynamics of SARS-CoV-2 S protein in the
absence or presence of ligands visualized using smFRET
imaging assays showed that ACE2 binding is controlled by the
conformational landscape of the RBD via population-shift
mechanism, in which ACE2 captures the intrinsically accessible
up RBD conformation rather than inducing a conformational
change.131 Moreover, smFRET data demonstrated that that
antibodies that target diverse epitopes of the S protein located
away from the RBD can allosterically modulate the RBD
functional dynamics and shift the thermodynamic equilibrium

Figure 3. (A) Molecular topography of allosteric communication pathways in the SARS-CoV-2 S 3RBD-down, 1RBD-up, and 2RBD-up trimers
with regulatory hotspots (S383, D985, A570L, I572, I856, F592, and K987) serving as switches of allosteric signaling. (B) The cryo-EM structures
of in the SARS-CoV-2 S 3RBD-down, 1RBD-up, and 2RBD-up trimers with protomers shown in green, blue, and cyan surface. A detailed
annotation of the S protein elements in the S1 and S2 domains is shown for a single protomer. (C) Protein pocket scanning of network-derived
allosteric positions identified major allosteric sites: hinge allo-pocket I at the junction of the subdomain 1 and subdomain 2 SD1/SD2 (F541, I587,
K557, I834, Y855, I856, L570, I572 M740, D745, and L981) and allo-pocket II (A520, C361, A522, K528, K529, D389, F329, and T333). (D)
Structural maps of the hinge regions in the SARS-CoV-2 spike trimer mutants and network-derived high centrality positions corresponding to
allosteric mediating sites shown in red spheres.
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toward the open S form that promotes ACE2 binding.
Conformational dynamics of SARS-CoV-2 trimeric S glyco-
protein in complex with ACE2 revealed by cryo-EM
experiments further confirmed that binding can modulate the
conformational landscape of the S trimer and induce
continuous swing motions between allosteric states.132 This
cryo-EM investigation proposed a mechanism of conforma-
tional transitions of the SARS-CoV-2 S trimer acting as the
dynamic allosteric fusion machine from the ground prefusion
state to the postfusion state, in which ACE2 binding shifts the
conformational landscape toward the open RBD state and
promoting a cascade of allosteric responses of the fusion
machine facilitating transitions toward the postfusion state.132

The energy landscape of the SARS-CoV-2 S proteins and
complexes with antibodies revealed extensive conformational
heterogeneity in which changes between unbound protein and
complexes with antibodies are often reminiscent of apo-to-holo
switching using the preexisting conformational equilibrium.
The intrinsic flexibility of the SARS-Cov-2 S proteins examined
by enhanced sampling simulations agreed with FRET cryo-EM
experiments, unveiling a multitude of functional allosteric
conformations with druggable cryptic pockets (Figure
3).133,134

These experimental and computational studies supported an
emerging paradigm that allosterically regulated dynamics of the
S protein may provide a versatile mechanism for efficient virus
transmission and enable diversity of escape mutation-induced
allosteric responses that counteract the effects of antibodies.
Using Folding@home distributed computing project adaptive

sampling simulations of the viral proteome captured dramatic
opening of the apo Spike complex, far beyond that seen
experimentally, and predicts the existence of “cryptic” epitopes
and hidden allosteric pockets.135 Using the cryo-EM
MetaInference (EMMI) method that can accurately model
conformational ensembles by combining simulations with
cryo-EM data, the intermediate states in the opening pathway
of SARS-CoV-2 S protein were identified signaling a
potentially druggable cryptic allosteric site located in the
vicinity of the RBD recognition site.136 These extensive
simulation studies have provided a strong evidence of
conformational heterogeneity of the S protein capable of
adopting a multitude of functional conformations and
unveiling previously unknown cryptic pockets during allosteric
transitions between the open and closed forms. Our recent
studies combined multiscale simulations of conformational
landscapes with coevolutionary analysis and network-based
modeling of the SARS-CoV-2 proteins to examine allosteric
mechanisms of the SARS-CoV-2 S proteins.137−140 These
studies suggested that coevolution, conformational dynamics,
and allostery conspire to drive cooperative binding interactions
and signal transmission of the SARS-CoV-2 S protein with
ACE2 enzyme. These studies provided compelling evidence
that the SARS-CoV-2 S protein can function as a functionally
adaptable allosterically regulated machine that exploits
plasticity of allosteric centers to fine-tune responses to
antibody binding, where the experimentally confirmed
regulatory hotspots correspond to the global mediating centers
of the allosteric interaction networks (Figure 3). By examining

Figure 4. Elucidation of the allosteric binding pockets identified for designing molecular modulators of the S protein. (A) An allosteric path was
discovered that correlates the motion of the RBD with the motion of the junction between the SD1 and the SD2 subdomains of the S protein. (B)
Building on this finding, we designed non-RBD binding allosteric modulators to inhibit SARS-CoV-2 by prohibiting the conformational change of
the S protein. (C) A schematic illustration of a cooperative conformational change of the S protein. (D) Three discovered potential molecular
modulators and their binding modes. The top three compounds, i.e., CPD7, CPD20, and CPD26, were proven to be able to inhibit SARS-CoV-2 at
a concentration of 100 μM. These compounds, especially the CPD7, show a stronger inhibitory effect, suggesting that these compounds may inhibit
viral entry.
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conformational landscapes and the residue interaction net-
works in the SARS-CoV-2 Omicron spike protein structures,
we have shown that the Omicron mutational sites are
dynamically coupled and form a central engine of the
allosterically regulated spike machinery that regulates the
balance between conformational plasticity, protein stability,
and functional adaptability.141 MD simulations demonstrated
an allosteric crosstalk within the RBD in the apo- and the
ACE2 receptor-bound states.142 Allosteric interactions be-
tween SARS-CoV-2 spike mutational sites were also confirmed
in extensive MD simulations, suggesting that the interplay of
spatially proximal local interactions and long-range communi-
cations between sites of escape mutations can represent an
evolutionary strategy employed by the virus to modulate
virulence of emerging SARS-CoV-2 variants.143

Elucidating this relationship between local interactions and
their global effects is essential to understanding evolution of
allosteric proteins that can be manifested as epistatic
nonadditive changes in biophysical properties at the level of
biological function.49 The effect of nonadditive, epistatic
relationships among S-RBD mutations was assessed by
comparing the effects of all single mutants at the RBD-ACE2
interfaces for the Omicron variants, showing that structural
constraints can curtail the virus evolution and put limits on
antibody escape.144 A systematic analysis of the epistatic effects
in the S-RBD proteins using DMS analysis of all amino acid
mutations in the SARS-CoV-2 S variants showed nonadditive
contributions of physically proximal mutational sites as well as
long-range couplings between sites of escape mutations.145

The functional and systems biology studies reinforced the
notion that the Omicron mutations may have emerged as an
evolutionary product of balancing multiple fitness require-
ments, including the immune escape, productive binding with
the host receptor, conformational plasticity, and allosteric
communications.146,147 The reversed allosteric communication
approach is based on the premise that allosteric signaling in
proteins is bidirectional and can propagate from an allosteric to
orthosteric site and vice versa, thus providing means for
detecting cryptic allosteric sites.148,149 An integrated computa-
tional and experimental strategy exploited the reversed
allosteric communication concepts to combine MD simu-
lations with MSM for characterization of binding shifts in the
protein ensembles and identification of cryptic allosteric
sites.150 A network-based adaptation of the reversed allosteric
communication approach was proposed to identify allosteric
hotspots and infer this analysis to characterize the distribution
of allosteric binding pockets (Figure 3) in the SARS-CoV-2
Spike Omicron BA.1, BA.1.1, BA.2, and BA.3 variant
complexes.151 Integrative computational and experimental
studies detailed allosteric communications in an S protein
trimer and validated the allosteric site located between SD1
and SD2 subdomains of the S protein (Figure 3).152 By
screening commercial compound databases, several hits were
selected and validated at both the molecular level and cellular
level for their binding strength and antivirus activities (Figure
4).
We also reported the discovery of potential small molecules

targeting the SARS-CoV-2 S protein by combining in silico
technologies with in vitro experimental methods. Using mass
spectrometry (MS) and surface plasmon resonance (SPR)
methods our studies have discovered and validated five natural
products as potential modulators of the S activity.153 Using a
combination of in silico and biochemical tools, N-acetylneur-

aminic acid (Neu5Ac), a type of predominant sialic acid found
in human cells, was tested as a molecular probe of the S
protein and validated as an allosteric modulator.154 A similar
dual strategy of molecular docking and SPR screening of
compound libraries interrogated 57,641 compounds and
identified 17 binders of ACE2 and 6 potent blockers of the
RBD that compete with the RBD-ACE2 interactions in an
SPR-based competition assay.155 Although identification and
validation of allosteric modulators of the SARS-CoV-2 S
proteins remain to be challenging tasks, exploiting allosteric
regulatory mechanisms and allosteric binding sites in SARS-
CoV-2 proteins has potential to discover viable broad-
spectrum therapeutic agents with utility for drug resistance.
AI expert systems and ML approaches showed a

considerable promise to reveal functions of SARS-CoV-2
spike (S) proteins particularly predicting patterns of evolving
mutations and mutational escape mechanisms. Deep muta-
tional learning (DML), a machine-learning-guided protein
engineering technology, was developed to investigate the
enormous sequence space of combinatorial mutations and
accurately predict the impact of these mutations on ACE2
binding and antibody escape.156 This method integrates yeast
display screening of RBD mutational libraries with deep
sequencing into an ML approach that can predict antibody
robustness to a large variety of SARS-CoV-2 variants, thus
serving as a guide for selection of effective therapeutics for
virus infection.156 A comprehensive ML-based investigative
framework for analysis of S protein mutations was developed
and applied to 4296 Omicron viral genomes, revealing a core
haplotype of 28 polymutants in the S protein and a separate
core haplotype of 17 polymutants in nonspike genes.157 A
multitask ML framework that harnesses systematic mutation
screens in the RBD of the S protein for predicting SARS-CoV-
2 antibody escape was recently unveiled.15 This ML model
analyzes data on escape from multiple antibodies simulta-
neously, creating a latent representation of mutations that is
effective in predicting the escape potential and binding
properties of the virus.158 ML models have been actively
deployed to facilitate physics-based predictions of the S
proteins with ACE2 and antibodies, revealing the impact of
RBD mutations and suggesting novel sets of mutations that
strongly modulate binding and escape properties of the
virus.159,160

■ CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Despite the growing evidence that many complex protein
systems and regulatory assemblies function as dynamic and
versatile allosteric machines, the understanding and character-
ization of the protein allostery universe even for a single system
which includes hidden allosteric protein states, allosteric
interactions, and communication pathways are still surprisingly
limited. Although many theories and models have been
developed in attempts to rigorously describe this phenomenon,
the highly dynamic, complex, and diverse nature of allosteric
events and mechanisms continues to pose new challenges to
the field testing the limitations of existing technologies and
making the quest for a universal theory of allostery an
important priority of computational and structural biology.
Among emerging directions in the field are computational
methods for the identification and mapping of allosteric
networks, as well as novel experimental approaches to study
allosteric mechanisms, including time-resolved and single-
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molecule studies; approaches to engineering allosteric
regulation to enhance function and facilitate the design of
sensors and drugs, the design of synthetic chemical networks
that use allostery in feedback mechanisms, directed evolution
of allostery, nonequilibrium simulation methods for modeling
of allosteric ensembles and pathways. The latest advances in
structural characterization of allosteric molecular events and
hidden functional states important for allosteric function using
cryo-EM, NMR, smFRET spectroscopy have highlighted the
growing need for data-centric integrative biophysics ap-
proaches. By developing an open science infrastructure for
ML studies of allosteric regulation and validating computa-
tional approaches using integrative studies of allosteric
mechanisms, the scientific community can expand the toolkit
of approaches and chemical probes for dissecting and
interrogation allosteric mechanisms in many therapeutically
important proteins. The development of community-accessible
tools that uniquely leverage the existing experimental and
simulation knowledge base to enable interrogation of the
allosteric functions can provide a much needed impetus to
further experimental technologies and enable steady progress.
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