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Abstract: The recent advances in artificial intelligence (AI) and machine learning have driven the
design of new expert systems and automated workflows that are able to model complex chemical
and biological phenomena. In recent years, machine learning approaches have been developed and
actively deployed to facilitate computational and experimental studies of protein dynamics and
allosteric mechanisms. In this review, we discuss in detail new developments along two major direc-
tions of allosteric research through the lens of data-intensive biochemical approaches and AI-based
computational methods. Despite considerable progress in applications of AI methods for protein
structure and dynamics studies, the intersection between allosteric regulation, the emerging structural
biology technologies and AI approaches remains largely unexplored, calling for the development
of AI-augmented integrative structural biology. In this review, we focus on the latest remarkable
progress in deep high-throughput mining and comprehensive mapping of allosteric protein land-
scapes and allosteric regulatory mechanisms as well as on the new developments in AI methods for
prediction and characterization of allosteric binding sites on the proteome level. We also discuss new
AI-augmented structural biology approaches that expand our knowledge of the universe of protein
dynamics and allostery. We conclude with an outlook and highlight the importance of developing an
open science infrastructure for machine learning studies of allosteric regulation and validation of
computational approaches using integrative studies of allosteric mechanisms. The development of
community-accessible tools that uniquely leverage the existing experimental and simulation knowl-
edgebase to enable interrogation of the allosteric functions can provide a much-needed boost to
further innovation and integration of experimental and computational technologies empowered by
booming AI field.

Keywords: allosteric regulation; deep mutational scanning; molecular dynamics; protein stability;
network modeling; deep machine learning; binding energetics; allosteric communications; allosteric
binding pockets

1. Introduction

Over the past years, artificial intelligence (AI) and machine learning (ML) approaches
have increasingly found their way into biomedical research, healthcare applications, and
drug discovery. AI augments the capabilities of human researchers, often outperform-
ing alternative methods, and leverages large amounts of high-quality data obtained in
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biochemical and biophysical experiments for model training which is a key bottleneck
that can unlock the full potential of AI technologies. The advances in the ML field have
driven the design of new tools and systems to model increasingly complex chemical and
biological phenomena [1–5]. Recent years have witnessed the remarkable growth of data-
intensive experimental high-throughput technologies and machine learning tools aiming for
atomistic-level interrogation and characterization and engineering of protein functions and
mechanisms. Allosteric interactions and communications in proteins are central to diverse
biological mechanisms, and allosteric regulation phenomenon has been long recognized as
the ‘second secret of life’ [6–14]. Nonetheless, dynamic molecular mechanisms that give
rise to allosteric molecular events continue to be fairly elusive and are often characterized
at a phenomenological level, lacking rigorous and universal theoretical and computational
foundation that can explain the enormous diversity of these processes. Diverse spatial and
temporal scales of thermodynamic and dynamic changes underlie allosteric regulatory
mechanisms and communications. Among important reasons that limited the fundamental
progress in characterization of allosteric mechanisms across human proteome is the lack
of precise and robust high-throughput biochemical methods that can comprehensively
quantify allosteric effects at the residue level resolution and the sparse data on quantitative
mappings of the genotype-phenotype landscapes for allosterically regulated proteins.

Structural and biophysical studies of allosteric molecular events that involve the for-
mation of short-lived allosteric states and intermediates have benefited from advances
in nuclear magnetic resonance (NMR) technologies that can be employed as powerful
tools for probing of allosteric interactions and communications in proteins [15–18]. NMR
studies highlighted progress in the determination of hidden allosteric states [19–26]. AI
and ML approaches can capitalize on the growing experimental and simulation data on
protein dynamics to enable robust exploration of conformational landscapes for complex
biomolecular systems [27–35]. In our recent review, we discussed potentials and limitations
of integrative computational and experimental studies empowered by AI/ML tools for
quantitative characterization of allostery from first principles [36] focusing on applications
of ML approaches for efficient conformational sampling and characterization of protein
dynamics. In the present review, we examine and discuss in detail new developments
along two major directions of allosteric research through the lens of data-intensive bio-
chemical approaches and AI-based computational methods (Figure 1). We focus on the
latest remarkable progress in deep high-throughput mining and comprehensive mapping
of allosteric protein landscapes and allosteric regulatory mechanisms. This review also
analyzes the latest developments in AI and ML methods for atomistic modeling of allosteric
proteins, experiment-guided mapping of allosteric energy landscapes, and new predictive
models of allosteric binding sites on the proteome level (Figure 1). We also discuss the
recent progress in the AI-augmented structural biology approaches that empower and
expand high-throughput capabilities of X-ray crystallography, cryo-electron microscopy
(cryo-EM), and single-molecule Förster resonance energy transfer (smFRET) technologies
to expand our knowledge of the universe of protein dynamics and allostery. We conclude
with an outlook and highlight the importance of developing an open science infrastruc-
ture for machine learning studies of allosteric regulation and validation of computational
approaches using integrative studies of allosteric mechanisms.
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conformations. (B,C) Different effects of allosteric regulators on modulating the thermodynamic 
equilibrium between allosteric conformations. 
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Deep Mutational Scanning Approaches 

Recent biochemical studies exploited and further advanced the Deep Mutational 
Scanning (DMS) approach to enable direct mapping of residue-based biophysical effects 
of mutations on protein stability, binding, and expression (Figure 2) [37–49]. Biochemical 
and functional studies using protein engineering and deep mutagenesis have quantified 
binding mechanisms of SARS-CoV-2 interactions with the host receptor ACE2 and a wide 
range of antibodies [38–43]. The landscapes of antibody binding for SARS-CoV-2 spike 
protein variants were systematically mapped by measuring the binding affinity of all pos-
sible combinations of these 15 receptor binding domains (RBD) mutations to a panel of 
monoclonal antibodies with distinct epitopes [42]. A powerful DMS platform based on 
non-replicative pseudotyped lentiviruses quantified how SARS-CoV-2 spike mutations 
impact pseudo-virus infection by providing a high-throughput approach to measure the 
effect of ∼105 combinations of mutations on antibody neutralization [43].  

A pioneering approach for global mapping of the energetic and allosteric landscapes 
of protein interaction domains leverages the massively parallel nature of DMS and em-
ploys multidimensional mutagenesis to causally quantify the phenotypic effects of thou-
sands of perturbations for multiple molecular phenotypes in diverse genetic backgrounds 
[44]. The new technique known as Double Deep Protein-Fragment Complementation As-
say (ddPCA) employs two separate selection assays based on the protein-fragment com-
plementation (PCA) assay so that one assay can detect mutational effects on the stability 
of the protein (AbundancePCA) while the other assay detects both stability and protein–
protein interactions (BindingPCA). Compared to other experimental approaches, ddPCA 

Figure 1. The integrative computational and experimental approaches for studies of conformational
dynamics and allosteric regulation mechanisms. (A) The energy landscape of different allosteric
conformations. (B,C) Different effects of allosteric regulators on modulating the thermodynamic
equilibrium between allosteric conformations.

2. Mining of Allosteric Protein Landscapes and Mechanisms Using Multidimensional
Deep Mutational Scanning Approaches

Recent biochemical studies exploited and further advanced the Deep Mutational
Scanning (DMS) approach to enable direct mapping of residue-based biophysical effects
of mutations on protein stability, binding, and expression (Figure 2) [37–49]. Biochemical
and functional studies using protein engineering and deep mutagenesis have quantified
binding mechanisms of SARS-CoV-2 interactions with the host receptor ACE2 and a wide
range of antibodies [38–43]. The landscapes of antibody binding for SARS-CoV-2 spike
protein variants were systematically mapped by measuring the binding affinity of all
possible combinations of these 15 receptor binding domains (RBD) mutations to a panel
of monoclonal antibodies with distinct epitopes [42]. A powerful DMS platform based on
non-replicative pseudotyped lentiviruses quantified how SARS-CoV-2 spike mutations
impact pseudo-virus infection by providing a high-throughput approach to measure the
effect of ∼105 combinations of mutations on antibody neutralization [43].

A pioneering approach for global mapping of the energetic and allosteric landscapes
of protein interaction domains leverages the massively parallel nature of DMS and employs
multidimensional mutagenesis to causally quantify the phenotypic effects of thousands of
perturbations for multiple molecular phenotypes in diverse genetic backgrounds [44]. The
new technique known as Double Deep Protein-Fragment Complementation Assay (ddPCA)
employs two separate selection assays based on the protein-fragment complementation
(PCA) assay so that one assay can detect mutational effects on the stability of the protein
(AbundancePCA) while the other assay detects both stability and protein–protein interac-
tions (BindingPCA). Compared to other experimental approaches, ddPCA can disentangle
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the stability and binding affinity effects of mutations and systematically quantify allosteric
sites that are distant from the binding interface in which mutations induce significant
changes on the binding via long-range [44]. These illuminating studies have provided in-
valuable insights into the underlying global features of allosteric landscapes that are driven
by evolutionary requirements for multiple phenotypic fitness factors. Among common
“rules” of allostery emerged from this study was the realization that allosteric mutations
and allosteric sites are common in protein domains and the frequency of allosterically
influential positions can increase near the protein binding interfaces, suggesting that local
allosteric perturbations may present an important mechanism of allosteric modulation of
binding [44]. Remarkably, this study also discovered the abundance of mutations in both
the protein core and protein surfaces that can alter stability and binding affinity, which
signified presence of a large genotypic space available for evolution and modulation of
diverse allosteric regulatory mechanisms.
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tory for datasets from Multiplexed Assays of Variant Effect (MAVEs), such as those generated by 
DMS [46]. Each cell in the heatmap is a different genetic variant measured in the experiment, where 
the color corresponds to the functional impact of the variant. (C) An example of DMS visualization 
for the human SUMO E2 conjugase UBE2I using functional complementation in yeast via DMS-
TileSeq obtained from MaveDB [46]. DMS-TileSeq read counts were used to establish relative allele 
frequencies in each condition. Non-mutagenized control counts were subtracted from counts (as 
estimates of sequencing error). log ratios of selection over non-selection counts were calculated. The 
resulting TileSeq fitness values were normalized to a 0–1 scale, where 0 corresponds to the median 
nonsense variant score and 1 corresponds to the median synonymous score [47]. 
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mutations in the same protein. By enabling high-throughput quantitative analysis of 

Figure 2. (A) Mutational profiling approach is typically characterized by a defined collection of single
mutants. In the DMS approach, the generation and expression of random mutants are followed
by high-throughput sorting of active mutants from inactive mutants using flow cytometry, phage
display, or growth selection. (B) An example of visualization of deep mutational scanning data
from MaveDB (https://www.mavedb.org/, accessed on 10 April 2023). MaveDB is an open public
repository for datasets from Multiplexed Assays of Variant Effect (MAVEs), such as those generated
by DMS [46]. Each cell in the heatmap is a different genetic variant measured in the experiment, where
the color corresponds to the functional impact of the variant. (C) An example of DMS visualization
for the human SUMO E2 conjugase UBE2I using functional complementation in yeast via DMS-
TileSeq obtained from MaveDB [46]. DMS-TileSeq read counts were used to establish relative allele
frequencies in each condition. Non-mutagenized control counts were subtracted from counts (as
estimates of sequencing error). log ratios of selection over non-selection counts were calculated. The
resulting TileSeq fitness values were normalized to a 0–1 scale, where 0 corresponds to the median
nonsense variant score and 1 corresponds to the median synonymous score [47].

In a very recent follow-up study, Lehner and coworkers developed a comprehensive
map of allostery and reported multiple global atlases of the inhibitory allosteric commu-
nications in KRAS protein by measuring the impact of mutations on the protein folding

https://www.mavedb.org/
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and binding to six interaction partners [45]. By using the developed enhanced DMS
technologies, this study systematically quantified and disentangled mutational effects
of protein residues in different genetic backgrounds which allowed to infer biophysical
effects of >26,500 variants of KRAS. In addition, this approach reconstructed the free energy
landscapes of KRAS binding with six interaction partners by producing >22,000 precise
thermodynamic measurements of the mutation-induced free energy changes—a truly
monumental achievement and a revolutionary step towards a comprehensive atomistic
mapping of genotype-phenotype landscapes on a large scale [45]. In particular, this study
quantified the inhibitory allosteric landscape for RAF1 binding by discovering a total of
361 allosteric mutations in 74 distally located from the binding interface allosteric positions,
showing that allosteric mutations are highly enriched in the nucleotide binding pocket site
of KRAS. This remarkable study revealed principles of allosteric communication in KRAS
which may be generalizable to other signaling proteins, showing that allosteric mutations
can inhibit binding to all three KRAS effectors and allosterically control binding specificity
indicative of fundamental role of allosteric sites in modulation and fine-tuning of binding,
regulation, and signaling [45].

DMS studies of the FabZ, LpxC, and MurA proteins that are involved in cell envelope
synthesis were performed with the aid of high-throughput CRISPR genome editing, reveal-
ing the effect of >17,000 protein variants on function [48]. Mutational libraries generated
in this study were deployed to characterize resistance development against antimicrobial
compounds that target the selected protein, dissecting the role of specific amino acids in
supporting viability. Nonetheless, this powerful approach displayed certain limitations
by assessing the effects of single mutations while synergistic and compensatory effects
of multiple mutations arising during evolution or due to protein responses eliciting drug
resistance remained elusive [48]. The importance of nonadditive, epistatic relationships
was assessed in the systematic biochemical analysis of all mutants at the binding interfaces
of the SARS-CoV-2 spike variants [49]. A systematic DMS-based mapping of the epistatic
interactions between the SARS-CoV-2 Spike BA.1 variant mutations relative to the Wu-
Hu-1 original strain showed evidence of compensatory epistasis in which immune escape
mutations are compensated by the emergence of affinity-enhancing mutations with the
host cell receptor ACE2 [50]. While mutations in proteins are typically deleterious and can
impair to a different degree protein function, and stability, compensatory neutral mutations
often facilitate protein evolution through positive epistasis with deleterious mutations in
the same protein. By enabling high-throughput quantitative analysis of functional effects
for thousands of mutations, DMS tools can facilitate understanding of complex synergistic
mechanisms and dissect functional cross-talks between mutational sites in addition to
quantifying the impact of single mutations. This venue presents a new frontier for fur-
ther development of DMS technologies, a challenge that requires integration of the DMS
datasets [47] with emerging ML models of epistasis and allostery [51].

A high-throughput platform was developed for DMS analysis of caspase-3 (CASP3)
and caspase-7 (CASP7) allowing for a large-scale assessment of mutations on caspase
structure and function and revealing differences between CASP3 and CASP7 proteolytic
activity and protein stability [52]. This study highlighted important limitations of “generic”
DMS studies in differentiating between specific molecular mechanisms as mutations that
decrease caspase activity could impact functional changes across multiple phenotypes,
including protein expression, stability, catalytic activity, substrate specificity, and allosteric
regulation. Strikingly, the results of this study further underscored the unique nature
of Lehner’s studies [45] that brilliantly overcame these inherent biophysical uncertain-
ties in their ddPCA-based DMS assays and systematically quantified specific functional
consequences of every mutation in the system resolving biophysical ambiguities that are
inherently present in standard DMS experiments.

Allosteric mapping of GTPase switch Gsp1/Ran system in the context of its in vivo
protein interactions by comprehensive mutational scanning enabled characterization of
allosteric sites for highly regulated molecular switches that catalyze GTP hydrolysis and
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nucleotide exchange [53]. Using a DMS experimental platform, this study discovered
new regulatory sites that are allosterically coupled with the GTPase active site allowing
allosteric mutations to alter Gsp1/Ran cellular function through modulation of GTPase
switching. A large-scale mapping of the genotype-phenotype landscape for the lac re-
pressor, LacI quantified the effect of mutations on LacI allostery, showing that a complex
balance between contributions from many residues and interactions can ultimately drive
the phenotypic outcomes [54]. Consistent with other studies, it was found that allosteric
genotype-phenotype landscapes can allow for rapid evolutionary innovation resulting in
novel allosteric phenotypes emerging from sampling a broader genotype space with higher-
order mutations [54]. The range and experimental details of DMS methods with a specific
focus on recently developed techniques in mutation library generation, high-throughput
methods, and data analysis were discussed in a recent insightful review [55].

3. Machine Learning Models Infer Genotype-Phenotype Relationships from
DMS Experiments

ML models leveraged the data-rich DMS results to generate predictive models and ob-
tain mechanistic insights into genotype-phenotype maps [56–61]. A positive-unlabeled (PU)
learning framework can infer sequence-function relationships from large-scale DMS data
showing strong predictive performance across ten large-scale sequence-function datasets,
representing proteins of different folds, functions, and library types [56]. DMS experi-
ments were combined with molecular dynamics (MD) simulations and network analysis
to examine the functional landscape of a bacterial transcription factor showing the role
of diverse and broad ensembles of mutational communication pathways in propagating
allosteric phenotypic effects [57]. Deep learning (DL) models built upon DMS data for sev-
eral bacterial allosteric transcription factors predicted the distribution of allosteric hotspots
revealing that regulatory sites mediating allostery can be broadly distributed on the protein
rather than being confined to narrow pathways linking the allosteric and active sites [58].
An important revelation of this study was the ability of DL models to accurately predict
functional sites and link these predictions with molecular mechanisms of allosteric reg-
ulation. A supervised DL architecture helped to infer sequence–function relationships
using training on large-scale DMS datasets [59]. Using different network architectures
ranging from linear regression to convolutional networks, this study displayed a predic-
tive accuracy on five diverse DMS datasets and enabled the design of a protein sequence
that binds to immunoglobulin G with substantially enhanced affinity compared to the
wild-type GB1 [59]. A statistical learning framework was developed to infer the protein
fitness landscape for DHFR protein from directed evolution data in which the inferred land-
scape model revealed numerous examples of epistasis arising from interactions between
residues and allow for analysis of evolutionary trajectories for protein engineering [60].
Recent studies showed that ML models can successfully reconstruct sequence–function
landscapes from large datasets and facilitate efficient protein engineering with less experi-
mental screening than traditional directed evolution approaches [61]. Understanding the
relationship between promoter sequence, expression phenotype, and fitness are central
in understanding evolution and gene regulation. The genomic analysis of sequence-to-
expression regulatory fitness landscapes leveraged data on millions of DNA sequences and
their experimentally measured expression to develop ML models and transformer encoders
that represented each sequence using a sorted vector of expression changes, allowing for
large scale exploration of novel genotypes and predictions of expression levels [62].

Multiplex assays of variant effect (MAVEs) are a type of DMS experiment that utilize a
combination of reporter assays, protein expression assays, and next-generation sequencing
(NGS) to screen thousands of variants in a single experiment and can be used to study
the effect of genetic variants on gene expression, protein stability, and protein-protein
interactions. Quantitative modeling of MAVE data is based on the use of latent phenotype
models, which describe the relationship between the observed data and a latent phenotype.
The framework is designed to capture the complex structure of MAVE data, including both
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the observed phenotype data and the underlying latent phenotype. The latent phenotype
model is then used to estimate the latent phenotype from the observed data, and to quantify
the effect of different environmental factors on the underlying latent phenotype [63]. Using
this framework, a Python package MAVE-NN implements a range of ML models for learn-
ing genotype-phenotype maps using latent phenotype neural networks and parameters
inferred from MAVE data using a TensorFlow 2 backend [63]. With the improving accuracy
of DMS datasets and the enhanced predictive power and robustness of generative ML
models, the integrative tools combining these approaches can discover functional protein
sequences with the designed fitness profile and guide exploration towards effective protein
engineering solutions.

4. Learning Protein Conformational Dynamics Using AI Approaches

Exploring and learning the protein allostery universe becomes increasingly plausible
using the proliferation of AI/ML tools and methods to solve long-standing problems in
molecular biology and biophysics. The remarkable success of AlphaFold2 (AF2) in protein
structure modeling and looming resolution of the protein folding problem in the last few
years have marked a revolutionary change in structural biology that was inconceivable
even several years ago [64,65]. However, the key shortcomings of the AF2 technology in
resolving conformational dynamics and allosteric phenomenon challenges are real and are
mainly associated with the limitations to accurately capture the ensembles and energetics
of functional conformational changes as well as mutational effects on protein dynamics
and functions [66]. In recent illuminating reviews, Nussinov and colleagues noted that
expanding AF2 tools for prediction of allosteric regulatory mechanisms would require a
considerable step forward beyond an accurate single structure prediction—from mapping
of the conformational ensembles to detection of low-populated allosteric conformations
and hidden functional states [67,68]. Several recent studies have provided strong evidence
that structure prediction capabilities of the AF2 methods are not trivially expandable for the
prediction of complex allosteric landscapes and mechanisms of allosteric regulation [69,70].
These formidable challenges will test the limits and further accelerate the developments
of AI technologies that are currently incorporating new concepts and architectures—from
natural language processing to generative transfer learning to enable unprecedented in
its scale prediction and design of protein structure, functions, and mechanisms. The
latest breakthrough in AI-based applications to large-scale protein structure predictions
involved language models of protein sequences at the scale of evolution trained on up
to 15 billion parameters that resulted in high accuracy end-to-end family of transformer
protein language models, ESMFold for atomic level structure prediction directly from
the individual sequence of a protein [71]. Compared to AF2, the trained language model
directly learns at scale evolutionary patterns of sequences linked to structure, strikingly
eliminating the need for the evolutionary databases, multiple sequence alignments, and
templates. This results in a speed improvement for structure prediction of more than
an order of magnitude while maintaining high resolution accuracy comparable to AF2
models [71]. A new method for accurate protein design by integrating structure prediction
networks and diffusion generative model called RoseTTAFold Diffusion (RFdiffusion)
enables the design of complex functional proteins from simple molecular specifications [72].
This method can generate novel protein structures of more than 600 residues that are
accurately predicted by AF2 and ESMFold, with the experimental data demonstrating that
designs are extremely thermostable [72]. These truly revolutionary developments in the
development and application of innovative AI technologies to fundamental challenges
in protein science and molecular biology are driven by unified efforts from a myriad of
academic laboratories and are accelerated by the growing attention to these problems and
competition between industry giants DeepMind/Google and Meta.

The biological Importance and complexity of protein conformational dynamics and
allosteric mechanisms require next-generation computational approaches and innovative
AI-based integrative tools synergizing advances in computation and experiments that
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can enable atomistic characterization of allosteric landscapes, states, and interactions. De-
velopment of AI-augmented simulation approaches that leverage ML tools to represent
physics-based thermodynamic and kinetic determinants of conformational sampling as
deep neural networks has gained a significant momentum in recent years. ML approaches
were employed to facilitate exploration of conformational landscapes using MD simulations
via optimal selection of reaction coordinates. By combining deep learning (DL) approaches
and biased MD simulations, physically meaningful collective variables can be determined
to resolve the bottlenecks that often hinder the reliable characterization of conformational
transitions and rare events [73]. Utilizing variational inference and a predictive information
bottleneck concept implemented through deep neural networks, a new framework was
recently proposed that utilizes brief MD simulations to estimate the reaction coordinates
and to conduct iterative biased simulations, which enables improved exploration of con-
formational landscapes and reliable prediction of the corresponding thermodynamic and
kinetic features of the system [74–77]. The ML model can be trained with simulation data
to generate realistic conformational ensembles of proteins without sampling. A recently
introduced generative adversarial network, idpGAN, based on a transformer architecture
with self-attention on coarse-grained simulations can be used to train an ML model to
generate physically realistic conformational ensembles of proteins without needing to
sample data and with minimal computational cost [78]. This proof-of-principle model can
predict sequence-dependent conformational ensembles for sequences that are not present
in the training set and can be further generalized for atomistic ensembles.

VAMPNets, an end-to-end learning system, can be used to predict molecular kinet-
ics with neural networks [79]. The combination of VAMPNet and graph-level dynamics
with neural networks creates GraphVAMPNet, which can accurately identify high res-
olution metastable states from long-term MD trajectories [80]. GMVAE can be used to
construct a reduced representation of the free energy landscape of protein folding, which
has clusters that correspond to the metastable states during folding [81]. A method that
applies ML models and MD simulations to explore protein conformational space uses an
autoencoder to map MD snapshots onto a user-defined conformational landscape defined
by principal components analysis or specific structural features [82]. Variational auto en-
coders (VAE) models were adapted for encoding protein structures into a two-dimensional
latent space to describe conformational changes between different allosteric states [83].
The recently introduced latent space-assisted adaptive sampling method for protein tra-
jectories (LAST) [84] can accelerate the exploration of protein conformational space by
using VAE and exploitation of the iteratively optimized training data for the latent-based
sampling (Figure 3). Using enhanced simulation schemes and machine learning models,
researchers have studied the molecular factors that lead to allosteric changes and ligand-
induced ensemble changes in proteins. Linear Discriminant Analysis was used to identify
differences between the apo and allosteric inhibitor-bound ensembles [85], and another
ML was developed to understand the temporal relationships of allosteric stimulation in
hemagglutinin-neuraminidase [86]. Zhou and colleagues employed an allosteric commu-
nity model based on a machine learning method to examine the allosteric mechanism of
the Vivid (VVD) protein [87]. An autoencoder-based detection method for characterizing
ligand-induced dynamic allostery was used to compare the time fluctuations of protein
structures in the form of distance matrices acquired from MD simulations [88].
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LAST [84] includes cycles of VAE training, seeding structure selection on the latent space, and
conformational sampling through iterative cycles of short MD simulations. The proposed approach is
validated using simulation studies of metastable states of adenosine kinase (ADK) and native states
of Vivid protein (VVD). The red stars refer to different protein conformations in the latent space of
the model.

5. From AI-Enabled Mapping of Allosteric Conformational Landscapes to ML
Discovery of Cryptic Allosteric Sites

The nature and atomistic details of the allosteric communication between the allosteric
site and the functional site are often difficult to dissect. While experimental approaches
could reveal allosteric hotspots and potential communication pathways in protein struc-
tures, robust and large scale-based tools for mapping of allosteric communications and
allosteric binding sites are still missing. The problem of identifying putative allosteric sites
can be addressed by considering the communication with orthosteric sites and uncovering
the allosteric communication pathways between orthosteric and allosteric sites. Compu-
tational methods for predicting binding sites and allosteric pockets can be classified as
geometric, energetic, evolution-based, knowledge-based, and machine learning approaches.
AlloPred uses normal mode perturbations along with pocket descriptors in a machine
learning approach to rank allosteric sites, with a good performance of 28 out of 40 cases [89].
The Allosite approach, which uses support vector machine classifiers of topological and
physicochemical characteristics of allosteric and non-allosteric sites, has shown promise in
predicting allosteric pockets [90]. AllositePro, an extension of Allosite, combines pocket
features with perturbation analysis to identify allosteric sites and was able to validate a
novel allosteric site in cyclin-dependent kinase 2 (CDK2) [91]. The Allosite and AllositePro
tools, along with the Alloscore scoring function and Allosterome database service, have
been essential components of allosteric services and applications developed in the past
decade for the evaluation of allosteric protein–modulator interactions and evolutionary
analysis of query allosteric sites/modulators within the human proteome [92]. The Ac-
tive and Regulatory site Prediction (AR-Pred) model was developed by utilizing various
residue-based features such as amino acid physicochemical properties, rate of residue
evolution, and features describing protein geometry and dynamics [93].

Recently, autonomous predictors of binding sites based solely on ML methods have
emerged, replacing traditional template-free methods such as Fpocket [94], SiteHound [95],
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and MetaPocket 2.0 [96]. ISMBLab-LIG is an ML algorithm that uses 3D probability den-
sity maps of interacting atoms as input attributes to predict ligand binding sites (LBSs),
which are relatively insensitive to local conformational variations [97]. DeepSite utilizes 3D
voxelization of the protein and deep convolutional neural networks (DCNN) for binding
site prediction, outperforming other structure-based algorithms on a set of 7622 proteins
from the scPDB database [98]. Other ML-based approaches such as FRSite [99] and Kalas-
anty [100] also use 3D voxelization of the entire protein, with FRSite based on Faster-RCNN
and Kalasanty employing a common segmentation architecture U-Net.

In recent years, the concept of end-to-end learning has been gaining attention. This
approach involves three main steps: (a) reducing the dimensions of inputs, (b) creating var-
ious neural networks based on the available data, and (c) applying backpropagation across
the entire architecture to reduce loss and update weights. For example, a neural relational
inference model that utilized a graph neural network and an autoencoder architecture
was used to explore the latent embedding of allosteric systems, learn about the long-range
interactions and communication between distant sites in the ligand-induced allosteric
regulation of Pin1, conformational transition of SOD1 protein, and the activation of MEK1
caused by oncogenic mutations [101]. Another machine learning (ML) approach, referred
to as DiffNets, was proposed which does not assume whether large structural changes
are more important than local changes, rather it utilizes a self-supervised autoencoder to
learn features of the conformational ensembles which are pertinent to distinguish between
protein systems [102]. DeepSurf introduces a new representation of the 3D protein surface
based on local voxel grids located around the surface, as well as a novel residual network,
LDS-ResNet, which has been extended in three dimensions to be applicable to volumetric
data [103]. This proposed method has been assessed in terms of binding site prediction
using various benchmark datasets, evidencing its superiority when compared to other
state-of-the-art approaches.

A template-free P2Rank approach is among the most efficient and fast available ML
tools for prediction of ligand binding sites [104,105]. It combines information from both
sequence and structural data to rank potential binding sites based on their likelihood of
binding a specific ligand. P2Rank uses support vector machine (SVM), random forests
(RF), and artificial neural networks (ANNs) to learn the features that are most important
for binding site prediction. This method is based on the prediction of the ligandability of
a local chemical environment that is centered on points placed on the protein’s solvent-
accessible surface [104,105]. P2Rank works by scoring and clustering these points on the
protein’s surface. The ligandability score of individual points is determined by a machine
learning model that is trained on a dataset of known protein–ligand complexes. The P2Rank
approach assigns structural, physical-chemical, and evolutionary features to points on a
mesh that covers the protein surface and builds a ML model from this representation.
Rather than learning to memorize ligand binding sites, P2Rank learns what makes local
neighborhoods around the protein surface intrinsically ligandable. This then allows the
detection of ligandable points, which are then clustered to produce a list of surface patches
corresponding to the predicted binding sites [104,105].

Recent advances in convolutional neural networks (CNNs) have made them very
effective in image recognition tasks. They have been widely applied to detect protein
binding sites which are represented as 3D-voxels with atomic attributes. A novel, rapid,
and accurate DL approach, BiteNet (Binding site neural Network) was developed for large-
scale and spatiotemporal identification of protein binding sites. Drawing inspiration from
computer vision problems such as object detection in images and video, BiteNet considers
protein conformations as three-dimensional images with channels corresponding to the
atomic densities, binding sites as the objects to detect on these images, and conformational
ensembles of proteins as three-dimensional videos to analyze [106]. In comparison to the
more established techniques, BiteNet has the ability to enable an extensive examination
of conformational ensembles and has the potential to recognize allosteric binding sites
in both soluble and transmembrane protein domains. The method has demonstrated
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its efficacy in identifying the most challenging binding site detection problems on three-
dimensional structures of pharmacological targets, such as ATP-gated cation channels,
epidermal growth factor receptors (EGFRs), and G protein-coupled receptors (GPCRs).
Notably, it successfully identified an oligomer-specific allosteric binding site made up of
the subunits of the trimeric P2X3 receptor complex, as well as a conformation-specific
allosteric binding site of the epidermal growth factor receptor kinase domain [106]. This
method was validated on a large HOLO4K benchmark dataset of holo protein structures
used for evaluation of binding site prediction methods [107] showing high accuracy and
speed, outperforming both DeepSite and P2Rank tools. BiteNet offers an alternative to
traditional methods of predicting binding sites in holo protein structures, by utilizing large-
scale analysis of conformational ensembles to assess protein dynamics and flexibility. The
sites of interest which are detected by this method can then be utilized for structure-based
drug design.

An ensemble learning method combining eXtreme gradient boosting (XGBoost) and
graph convolutional neural networks (GCNNs), and an automated machine learning
method (AutoGluon and AutoKeras) was developed to predict plausible allosteric sites
and both models were incorporated to Prediction of Allosteric Sites Server (PASSer)
(Figure 4) [108,109]. Most ML models are designed to make predictions either as labels
or probabilities for all pockets detected in studied proteins, which is still a challenging
and time-consuming task. Learning to Rank (LTR), an emerging area, and LTR models
provide ‘relative’ predictions by ranking objects from the most to the least relevant, mak-
ing detection and ranking of the allosteric sites more tractable. LambdaMART model is
implemented for allosteric sites ranking with gradient boosting decision tree (GBDT) and
Lambdarank loss function [110]. Compared with other ML models such as XGBoost, SVM,
and RF, LambdaMART achieved the highest efficiency and showed a better ability to rank
the experimentally known allosteric sites at top positions [110].

Cryptic binding sites are small and hidden pockets in proteins that are difficult to
detect using traditional methods such as X-ray crystallography and NMR spectroscopy
as they may emerge in meta-stable intermediate states that are typically short-lived and
dynamic in nature, often appearing during allosteric conformational changes. Additionally,
cryptic pockets may contain non-polar or hydrophobic residues that do not form strong
hydrogen bonds with other molecules in the protein, making them difficult to detect by
computational methods. Accurate and rapid discovery of potential cryptic pockets in a
protein structure is an important and challenging problem and robust approaches capable
of uncovering hidden druggable sites that can greatly accelerate the scope of therapeutic
interventions and modernize drug discovery of the future.

While the repertoire of available methods for detection of protein binding pockets
and ligand binding sites is rich and diverse, the reliable identification of allosteric binding
sites and hidden allosteric pockets available in short-lived intermediate states is far more
challenging. The emergence of recent AI and ML models to incorporate the elements of
protein dynamics and sophisticated CNN and DL architectures may provide a fruitful
avenue for future developments. These directions are organically linked with the increasing
interest to adaptation of AF2 tools for prediction of conformational ensembles and func-
tional states with previously unknown hidden pockets making them an appealing target
for a new generation of drug discovery technologies. An important step forward to address
challenges of detecting cryptic binding pockets emerging from conformational ensembles
is made in a novel method PocketMiner that employs DL-based architecture to identify
pockets in large protein structures that have not been identified through crystallography
or other experimental techniques. In contrast to previous methods, PocketMiner utilizes
molecular simulations to evaluate if each residue in a protein structure has the ability to
rearrange its orientation to participate in a cryptic pocket as part of its thermal fluctuations.
The proposed DL model is trained on extensive datasets of structural ensembles derived
from simulations that contain examples of pocket opening events. PocketMiner can detect
hidden binding sites more than 1000 times faster than existing methods when applied
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to single structures from a newly created dataset of 39 experimentally confirmed cryptic
pockets [111,112]. PocketMiner was also applied to the human proteome discovering that
more than half of proteins, which were assumed to lack pockets based on the available
structures, likely contain cryptic pockets [111,112].
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Figure 4. (A) A web server workflow for the Prediction of Allosteric Sites Server (PASSer) ap-
proach [108,109] for prediction of allosteric binding sites is presented. Users may submit a PDB ID
or a PDB file, and the server will use a pretrained XGBoost model to calculate and predict physical
properties for each pocket, and a pretrained GCNN model to construct and process an atomic graph.
(B) Structures of nine proteins with modulators and predicted pockets [109]. The following protein
structures were analyzed: (a) 2FPL, (b) 2R1R, (c) 3BCR, (d) 4PFK, (e) 1Q5O, (f) 3PEE, (g) 4HO6,
(h) 1XMV, and (i) 2OZ6 [109]. The yellow pockets are labeled as allosteric, and the lime molecules are
modulators. For (a–g), the allosteric pockets are successfully predicted as top one by our model. For
(h,i), the red pockets are predicted as the first place, and the allosteric pockets are predicted as the
second place. (C) A schematic flowchart of PASSer algorithm [108,109].

6. AI-Augmented Cryo-EM and smFRET Approaches Expand the Universe of Protein
Conformational Dynamics

Recent advances in single-particle cryo-electron microscopy (cryo-EM) have enabled
the determination of numerous near-atomic resolution structures for well-ordered proteins
and large macromolecular assemblies breaking resolution barriers for studies of allosteric
events and allosteric drug discovery [113–115]. The processing of increasingly large, com-
plex datasets using traditional data processing strategies is exceedingly expensive in both
user time and computational resources.

The recent development of data processing capitalizes on AI and ML models to en-
hance the efficacy of data analysis and validation and automate the steps of particle picking,
3D map reconstruction, and local resolution determination [116]. Furthermore, DL al-
gorithms have been used to improve the accuracy of cryo-EM image reconstruction, by
providing more accurate estimates of the resolution and signal-to-noise ratio. DL-based
image processing approaches have been used in processes of cryo-electron microscopy 3D
reconstruction and atomic structure determination [117–120]. CryoDRGN (Deep Recon-
structing Generative Networks) is a network that enables heterogeneous reconstruction
by learning a deep generative model of 3D structure from diverse cryo-EM density maps.
This neural network representation of structure can model single density maps with a
higher resolution, and it can be used for unsupervised heterogeneous reconstruction [121].



Int. J. Mol. Sci. 2023, 24, 7747 13 of 20

Cryo-EM reconstructs multiple configurations of the same sample from images, which
usually needs several rounds of 2D and 3D classifications to understand the conformational
heterogeneity. CryoDRGN can produce a large number of 3D density maps, and automated
processing methods for analyzing the results of CryoDRGN have also been created [122].
ResNet is a type of deep learning model that uses a deep neural network architecture
composed of residual layers. It has been shown to be effective in a variety of computer
vision and natural language processing tasks. The ResNet model uses a set of convolutional
layers to learn the representation of the input data, and then a set of residual layers to
refine the representation. The residual layers are used to learn the difference between the
input and the output of the convolutional layers, making the model more efficient and
accurate. The DeepHEMNMA method uses this architecture to learn the distribution of
the conformational heterogeneity captured in the single particle images and to use this
distribution to generate a single, ensemble-averaged structure [123].

Single-molecule Förster resonance energy transfer (smFRET) paved the way for study-
ing dynamics in macromolecular structures under biologically relevant conditions [124]
The recent breakthroughs in smFRET technologies have enabled dynamic studies of
large biomolecules at atomic resolution. MD simulations have been widely applied
with smFRET experiments to provide atomistic insights into the dynamic behavior of
biomolecules [125,126].

Microsecond MD simulations have been used in combination with ML methods and
restraints derived from smFRET experiments to successfully recapitulate and interpret
smFRET states and allosteric conformational transitions [127–129]. This integration of
single-molecule experiments, MD simulations, and ML models involves supervised learn-
ing, in which an initial Markov State Model (MSM) is constructed from raw simulation
data, and unsupervised learning, which entails performing hidden Markov modeling to
optimize the initial MSM using smFRET time-series measurements [127]. MD simulations
can be used in conjunction with information from smFRET experiments to create an au-
tomated FRET-assisted structural model that can increase the accuracy of an integrated
structure, as well as allow for FRET-assisted coarse-grained structural modeling and MD
simulation-based refinement [130]. Recently, ML developments in single-molecule imaging
automation and single-molecule feature recognition, including smFRET intensity trace
analysis, have been reviewed [131].

The DeepFRET method utilizes DL architectures for rapid and automated classification
of smFRET data, which is a significant challenge in smFRET experiments and the analysis
of protein dynamics [132]. This approach, trained on simulated smFRET time-series,
accurately and effectively distinguishes and categorizes smFRET experimental series both
in simulated ground truth data and in a real-world dataset. The AutoSiM approach, which
is based on DL, is used for automated screening of smFRET data to identify high-quality
traces for further investigation [133].

By leveraging smFRET and MD simulations, researchers have explored the molecular
basis and dynamic events associated with allosteric regulatory mechanisms. For example,
a study of the NMDA receptor uncovered the mechanism of allostery underlying negative
cooperativity, revealing that binding of one agonist leads to flexibility and increased con-
formational spread at the second agonist site [134]. Additionally, smFRET imaging tools
have been used to analyze the conformational dynamics and allosteric modulation of the
SARS-CoV-2 Spike protein by antibody binding [135].

By combining smFRET, fluorescence correlation spectroscopy (FCS), and fluorescence
lifetime measurements with atomistic MD simulations, researchers were able to show how
ATP hydrolysis in Hsp90 chaperones induces allosteric changes at a distant protein binding
site and modulates chaperone activities [136]. Furthermore, the effects of positive allosteric
modulators on structural dynamics of metabotropic glutamate receptors (mGlu2) were
explored in optimized detergent micelles using smFRET at sub-millisecond timescales,
demonstrating how the modulators can increase mGlu2 receptor efficacy through fast
inter-subunit rearrangements [137].
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Despite considerable progress in applications of AI and ML methods in cryo-EM and
smFRET studies, the intersection between allosteric regulation, the emerging structural
biology technologies, and AI approaches are largely unexplored, calling for the develop-
ment of AI-augmented integrative structural biology. This is an exciting area of research,
with the potential to reveal the underlying mechanisms of allosteric regulation and to
develop new ways of controlling the behavior of proteins. By better understanding the
mechanisms of allosteric regulation and developing new AI approaches, we can gain a
better understanding of how proteins work and how they can be manipulated to produce
desired biological outcomes. In addition, by combining these technologies, AI-enabled
integrative tools could unveil the invisible aspects of protein ‘life’ revealing hidden protein
states and reconstructing allosteric landscapes for therapeutically important regulatory
proteins operating under allosteric control. Through potential synergies of these innovative
technologies, AI-enhanced biochemical and structural biology tools can create novel ways
of controlling the structure and activity of proteins to achieve desired outcomes, leading to
a new era of protein engineering and synthetic biology.

7. Concluding Remarks and Future Perspectives

Despite the accepted understanding that intricate protein systems and regulatory
complexes often function as dynamic and diverse allosteric machines, the characteriza-
tion of hidden and uncommon protein functional states, allosteric structural changes, and
allosteric pathways is still surprisingly scarce, necessitating the combination of new struc-
tural, biophysical, and computational approaches to address these problems. Research
in the area of allosteric mechanisms is advancing in several new directions, such as the
use of computational methods for the detection and visualization of allosteric networks,
as well as the development of novel experimental methods to study allosteric processes.
The latest remarkable progress in deep high-throughput mining and comprehensive map-
ping of allosteric protein landscapes and allosteric mechanisms using novel experimental
technologies created a wealth of high-quality data that were used in the development of
new experiment-guided AI systems. The recent studies have shown that the continuous
developments and adaptations of AI and ML tools in high throughput biochemistry and
their integration with DMS tools can reveal atomistic details of allosteric landscapes and
result in a comprehensive characterization of allosteric mutations, yielding unprecedented
insights into molecular mechanisms of complex biological systems.

The latest advances in structural characterization of allosteric molecular events and
hidden functional states using cryo-EM, NMR, smFRET spectroscopy have highlighted the
growing need for data-centric integrative biophysics approaches. These emerging meth-
ods and tools, including high-throughput sequencing, microscopy imaging, proteomics,
metabolomics, and systems biology, involve utilization of AI and ML models trained on
large datasets from different sources. AI-augmented integrative biophysics approaches
leverage the power of AI to facilitate the integration of multiple data sources and to dis-
cover novel physical principles underlying biological systems. The latest developments
reviewed in this study suggest that AI can be used to develop more accurate predictive
models of diverse and complex biological systems, identify relevant features from large
scale datasets, and provide insights into the underlying physical mechanisms of biological
processes. AI-augmented biophysics approaches in structural biology can also be used
to automate the experimental design process and optimize laboratory techniques, allow-
ing scientists to conduct research and identify meaningful patterns in the data quickly
and efficiently. In addition, AI-augmented integrative biophysics approaches will pro-
vide new strategies for drug design and development—from allosteric drug discovery
to pathway-targeted design, systems medicine, and protein engineering applications. By
developing an open science infrastructure for machine learning studies of allosteric reg-
ulation and validating computational approaches using integrative studies of allosteric
mechanisms, the scientific community can expand the toolkit of approaches for dissecting
and interrogation allosteric mechanisms in many therapeutically important proteins. The



Int. J. Mol. Sci. 2023, 24, 7747 15 of 20

development of community-accessible tools that uniquely leverage the existing experimen-
tal and simulation knowledgebase to enable interrogation of the allosteric functions can
provide a much-needed boost to further innovation and integration of experimental and
computational technologies empowered by a booming AI field.
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