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ABSTRACT: Molecular dynamics (MD) simulations have been extensively used to study protein dynamics and sub-
sequently functions. However, MD simulations are often insufficient to explore adequate conformational space for
protein functions within reachable timescales. Accordingly, many enhanced sampling methods, including variational
autoencoder (VAE) based methods, have been developed to address this issue. The purpose of this study is to evaluate
the feasibility of using VAE to assist in the exploration of protein conformational landscapes. Using three modeling
systems, we showed that VAE could capture high-level hidden information which distinguishes protein conformations.
These models could also be used to generate new physically plausible protein conformations for direct sampling in
favorable conformational spaces. We also found that VAE worked better in interpolation than extrapolation and
increasing latent space dimension could lead to a trade-off between performances and complexities.
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1. INTRODUCTION
All proteins are dynamic entities. The dynamics of
proteins are bridges between the conformational
ensembles and the corresponding functional states. In
general, proteins carry out their biological functions by
adopting a certain range of conformations. Therefore,
sufficiently sampling the conformational space is criti-
cal for understanding how proteins fulfill their bio-
logical functions.1 Many structural biology techniques,
including X-ray crystallography,2 cryo-electron mi-
croscopy,3 nuclear magnetic resonance,4 electron
paramagnetic resonance,5 and F€orster resonance ener-
gy transfer6 methods can be used to provide informa-
tion about protein structures, dynamics, and
conformational changes.7

Molecular dynamics (MD) simulations are compu-
tational tools to provide protein conformational changes
by integrating the dynamical equations of motions
starting from an initial structure and velocity of each
particle inmolecularmodels.7,8With the ever-increasing
computational power, the accessible simulation time-
scale for protein systems has reached the microsecond

range to provide great details and insights into protein
dynamics and functions in typical computational
studies.9,10 However, challenges also persist that the
high-dimensional conformational spaces can be rarely
sufficiently sampled by brute force simulation.11,12

Specifically, the transitions between distinct conforma-
tional states that are separated by high kinetical barriers
may take a significantly longer time to occur than
accessible timescales of MD simulations. The high-
dimensional conformational landscapes of proteins
could containmultiple energetically favored states which
are separated by high potential barriers, which prevent
the MD simulations from transitioning frequently
among these states. The developments of methods for
enhancing comprehensive and efficient sampling of
protein conformational spaces are critical.12–14

Many enhanced sampling methods have been de-
veloped to address this issue, which in general fall into
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two categories: collective variable based (such as
metadynamics14,15 and variationally enhanced sam-
pling16,17) and collective variable free methods (such as
replica exchange molecular dynamics18,19 and inte-
grated tempering sampling).12,20–23 The deep-learning
autoencoder models24 present a powerful nonlinear
dimensionality reduction technique to mine data-
driven collective variables from MD trajectories.25–32

This technique furnishes explicit and differentiable
expressions for the highly abstract and differentiable
collective variables, making it an ideal candidate for
integration with enhanced sampling techniques to ac-
celerate the exploration of the protein configurational
space.33

In this study, we focused on the variational auto-
encoders (VAEs) for compressing and abstracting the
hidden dynamical features. Three systems were used to
assess the VAE model from multiple perspectives. The
Calmodulin protein was used to evaluate whether the
VAE could capture the substantial conformation dif-
ferences in latent space. The Toho-1 protein was used
to evaluate whether the VAE could correlate low-
dimensional distances and high-dimensional confor-
mational discrepancy and generate new physically
plausible structures to start new simulations and
complement the existing MD simulation trajectories.
The ubiquitin protein was used to evaluate the influ-
ence of latent space dimensionality on VAE perfor-
mance. We showed that the VAE-learned latent space
trained with MD simulations as training data could
retain key properties in high-dimensional conforma-
tional space and that it was possible to predict physi-
cally plausible conformations which are rarely
accessible during the MD simulations. These recon-
structed VAE-learned conformations can be used as
seed conformations to initialize new simulations. We
also observed that VAE worked better for interpolation
than extrapolation, and there was a trade-off between
performances when increasing the latent space di-
mension. We concluded that VAE could serve as a tool
for exploring the protein conformations and demon-
strated that the initial data preparation was important
to construct a reliable VAE model.

2. METHODS

2.1. Molecular dynamics simulations

The initial structures of the modeled proteins were
obtained from the Protein Data Bank (Calmodulin:
1CLL,34 Ubiquitin: 1UBQ,35 Toho-1: 5KMW36). The
protonation states of titratable residues were

determined under neutral pH. The protein systems
were solvated in suitably sized water boxes, detailed in
their respective results sections. In each system, sodium
and chloride ions were added to maintain an ionic
strength of 0.1M. The classical CHARMM36m37 force
field and the CHARMM-modified TIP3P model38 were
used to simulate the protein and the solvent molecules,
respectively. The preprocessing was conducted using
CHARMM39 (version c41b1).

Unless noted otherwise, the MD simulations were
carried out as follows. After energy minimization, the
systems were first heated from 110 to 310 K with a
temperature increment of 20 K per 100 ps. Conse-
quently, the systems were subjected to isothermal-
isobaric (NPT) equilibrations at 310K (equilibrium
run), followed by canonical (NVT) simulations (prod-
uct run) at 310K. Snapshots of the product run were
taken evenly between certain intervals and saved for
further analysis. The time length for the MD simulation
conducted for each system is noted in their respective
results sections. In all simulations, the SHAKE40 con-
straint was used to rigidify all covalent bonds in the
solvent molecules and the proteins. The nonbonding
interactions within 10Å were treated explicitly. The
Lennard–Jones interactions were smoothed out to zero
at 12Å. The long-range electrostatic interactions were
accounted for using the particle mesh Ewald summa-
tion method.41 The simulation was conducted using
OpenMM42 (version 7.6.0).

The trajectories were aligned by rigid rotation and
translation using all heavy atoms as the reference.
Cartesian coordinates of all heavy atoms were extracted
and used as input features after a normalization pro-
cedure by min-max scaling. That is, the coordinate cki
(c 2 x; y; z) for atom i in structure k is normalized as

cki ¼
cki "minðciÞ

maxðciÞ "minðciÞ
: ð1Þ

2.2. Modeling systems

Calmodulin (CaM) is a regulatory Ca2þ-binding pro-
tein involved in the regulation of many important bi-
ological processes.43–45 EF-hand, the calcium-binding
motif in CaM, is a helix-loop-helix structure compris-
ing 12 residues. The binding of calcium ions causes the
conformation transition of EF-hand loops and induces
substantial rearrangement.43,45 EF-loops I to IV of CaM
comprise residue numbers 20–31, 56–67, 93–104, and
129–140, respectively (Fig. S1). Many experimental and
computational studies have been conducted to deter-
mine the binding affinity and selectivity of four
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EF-hand loops.44–47 Ye et al. reported that the dissocia-
tion constants between EF-loops I–IV and Ca2þ were
ordered as I > III & II > IV.46 Therefore, Ca2þ ions
were removed sequentially with the reverse order of
binding affinity (IV, II, III, I). A total of five systems were
obtained and labeled as CAM0 through CAM4. The
number represents the number of bound Ca2þ ions in
the system. All five systems were solvated in 105Å '
80Å ' 65Å water boxes. Equilibrium runs for 21
nanoseconds (ns) and production runs for 200 ns were
performed sequentially for each system. The trajectories
of the production runs were saved every 40 picoseconds
(ps), resulting in 5,000 frames for each system.

The !-lactamase enzymes are a family of hydrolytic
enzymes expressed by infectious bacteria for hydro-
lyzing !-lactam based antibiotics and manifest clini-
cally challenging antibiotic resistance. Toho-1 belongs
to the extended-spectrum !-lactamase CTX-M
enzymes, one important sub-family of class A serine-
based !-lactamases (AS!Ls),36 and has efficient hy-
drolytic activity against penicillin and cephalosporin
antibiotics.48,49 The active site cavity of Toho-1, which
is critical for its antibiotic activity, locates at the in-
terface of two highly conserved domains ("=! and ").
The three engineered mutations (Ala166/Asn274/
Asn276) in the crystal structure were modified to
Glu166/Arg274/Arg276 as in the wild-type enzyme.
The system was solvated in cubic water boxes of 95Å.
Equilibrium runs for 20 ns and production runs for
400 ns were performed sequentially. The trajectory of
the production run was saved every 20 ps, resulting in
20,000 frames.

Ubiquitin, a small protein with 76 residues, was used
to conduct a relatively long simulation. The system was
solvated in cubic water boxes of 75Å. Equilibrium runs

for 20 ns and production runs for 2 microseconds (#s)
were performed sequentially. The trajectory of the
production run was saved every 100 ps, resulting in a
total number of 20,000 frames.

2.3. Variational autoencoders

Autoencoders are composed of two sequentially
concatenated networks: an encoder network for data
compression and a decoder network for reconstruction
(Fig. 1). The encoder network receives a d-dimensional
input feature vector associated with example x 2 Rd

and encodes it into a p-dimensional vector, z with
z 2 Rp. In other words, the role of the encoder is to
learn how to model the function z ¼ f ðxÞ. The encoded
vector, z, is also known as the latent vector or the latent
feature representation. Typically, for an undercomplete
autoencoder, the dimensionality of the latent vector is
less than that of the input examples (hourglass-shaped
architecture, p < d). Then, the decoder decompresses x̂
from the low-dimensional latent vector, z, as a function
x̂ ¼ gðzÞ.50 The decoder module of an autoencoder
shares some conceptual similarities to a generative
model. They both receive a latent vector z as the input
and return an output x̂ in the same space as x. How-
ever, the major difference between the two is that we do
not know the distribution of z in the autoencoder,
while in a generative model, the distribution of z is fully
characterizable. It is possible to generalize an auto-
encoder into a generative model. VAE is such an
approach.

In VAE, the encoder network is modified with ad-
ditional optimization constraints on the latent vector
distribution: the mean (#) and variance ($2). During
the training of a VAE, the model is forced to match

Fig. 1. (Color online) VAE architecture. The Cartesian coordinates of all heavy atoms are extracted as inputs. The encoder network with
decreasing numbers of neurons in hidden layers encodes high-dimensional inputs to a low-dimensional latent space. The decoder network
with increasing numbers of neurons in hidden layers projects latent space back to protein structures.
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these moments with a certain distribution (commonly
the standard normal distribution). The latent vector
distribution can therefore be regularized during the
training such that the VAE latent space could reason-
ably correlate with the intrinsic distributions of the
sample inputs. After the VAE model is built, the de-
coder module could be used to generate new examples,
~x, by feeding arbitrary values of z vectors.

We implemented the VAEs with the Keras51 front-
end in TensorFlow52 v2.6.2. A detailed implementation
is provided in the Supporting Information.

2.4. Principal component analysis (PCA)

PCA is a commonly used linear dimensionality re-
duction method that projects each data point onto
fewer principal components (PCs) than original
dimensions while preserving as much of the data’s
variability (i.e., statistical information) as possible.53–55

When a set of p original variables is replaced by an
optimal set of PCs, the performance is incremental with
the number of PCs used for projection. It can be
measured by the variability associated with the set of
retained PCs. The sum of variances of the p original
variables (as well as all p PCs) is the trace of the co-
variance matrix S and the quality of a given PC j is the
proportion of total variance that it accounts for, shown
as follows:

%j ¼
&jP p
j¼1 &j

¼
&j

traceðSÞ : ð2Þ

As a result of PCs’ incremental nature, more total
variance can be explained if more PCs are retained. A
predetermined percentage of the total variance
explained can be used to decide how many PCs should
be retained. All PCAs in this study were performed
using scikit-learn56 v1.0.1.

2.5. Performance criteria

Pearson correlation coefficient (PCC) is a measure of
linear correlation between two sets of data. It is the
ratio between the covariance of two variables covðX;YÞ
and the product of their standard deviations $. It is a
normalized measurement of the covariance, such that
the result always has a value between "1 and 1. Given
two sets of data, X and Y , with n samples respectively,
PCC is calculated as

'X;Y ¼ covðX;YÞ
$X$Y

¼
Pn

i¼1ðxi " "xÞðyi " "yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi " "xÞ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi " "yÞ

p ;

ð3Þ

where x and y represent individual samples in X and Y ,
and "x and "y represent the averaged values.

Spearman correlation coefficient (SCC) is a non-
parametric measure of rank correlation (statistical de-
pendence between the rankings of two variables). It
assesses how well the relationship between two vari-
ables can be described using a monotonic function. The
Spearman correlation coefficient is calculated as

' ¼ 1" 6
P

d 2
i

nðn2 " 1Þ
; ð4Þ

where di ¼ RðxiÞ " RðyiÞ is the difference between the
ranks R of individual sample xi and yi in datasets X and
Y , respectively.

Root-mean-square deviation (RMSD) is a measure
of the differences between a molecular structure and a
reference. Given a molecular structure with a total of N
atoms and a reference structure r 0, the RMSD of
structure r is calculated as

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i¼1

ðr 0i " UriÞ2

vuut ; ð5Þ

where ri and r 0i are the coordinates of atom i in
structures r and r 0, respectively. U is the translational
and rotational operator that minimizes the RMSD
distances by rigid fitting.

Root-mean-square fluctuation (RMSF) is a param-
eter to evaluate the flexibility of individual residues.
RMSFi measures how much an individual residue i
fluctuates around its average position "ri in a simulation
with T frames. RMSFi is calculated as

RMSFi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT

t¼1

ðriðtÞ " "riÞ2

vuut ; ð6Þ

where riðtÞ is the coordinate for residue i in frame t.
Discrete Optimized Protein Energy (DOPE)57 is a

potential function used to evaluate the quality of
predicted protein structure. The lower the DOPE
score, the better the model. DOPE scores were cal-
culated using the modeling package MODELLER58

(version 10.2).

3. RESULTS

3.1. Evaluation of encoder with latent space

The construction of VAE enforces the latent vectors
transformed from the input samples to evenly
distribute in the latent space by imposing an additional
optimization constraint. This constraint utilizes the
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Kullback–Leibler (KL) divergence59 between the bat-
ched latent vectors and a standard normal distribution,
in addition to the reconstruction error, as the loss
function. Due to the intrinsic property of the KL
divergence, distances among data points in low-
dimensional space are not necessarily guaranteed to
always preserve when the distances among these data
points are large in the high-dimensional space.60 In this
study, we investigated how data points were distributed
and spaced out in the latent space, which reflects how
well and reasonably the encoder module projects the
high-dimensional data onto low-dimensional latent
space. We first assessed the performance of VAE
models to distinguish different groups of conforma-
tions with significant differences. Then we evaluated
how the shift of their corresponding low-dimensional
representations reflects the changes in high-
dimensional conformations.

3.1.1. Calcium binding states of calmodulin

All 25,000 frames of the five CAM systems were aligned
to the first frame of CAM0. The VAE model was
trained using all 25,000 frames and the latent space was
provided in Supporting Information (Fig. S2). To in-
vestigate whether VAE could capture the critical con-
formational change of CaM upon binding with Ca2þ

ions, the last 160 ns (last 4,000 frames) of each system
were projected onto the latent space (Fig. 2). The first
40 ns was considered as the equilibrium stage and the
rest was considered to have relatively stable overall
conformational evolutions.

The simulations of five different systems CAM0
through CAM4 were separated into five regions in the
latent space (Fig. 2(a)). Five points were randomly
picked from five different regions, respectively. The
original structures and decoded structures were aligned
and illustrated (Figs. 2(b)–2(f)). The stacked original
structures and the RMSD between each other are
provided in Supporting Information (Fig. S3 and
Table S1).

In this system, VAE retained the knowledge learned
from the high-dimensional conformational space in the
latent space. The fidelity of the decoded structures with
reference to the original structures demonstrates that
VAE has a good capability to compress and reconstruct
data. Also, conformations with significant differences
were well separated in the latent space, while the pro-
jections of similar conformations aggregate in the latent
space.

3.1.2. Structure correspondence of Toho-1

An averaged configuration for Toho-1 was calculated
after aligning all 20,000 conformations from all frames
by rigid rotation and translation. This averaged con-
figuration was used as the reference to measure the
temporal drifting of each snapshot. A VAE model was
trained using the aligned structures and the projection
of simulation data was presented in Supporting Infor-
mation (Fig. S4). For validation purposes, we replaced
the coordinates of individual residue in every simula-
tion frame with its coordinates in the average structure.
The reason for doing so is to measure the sensitivity of

Fig. 2. (Color online) (a) Projection of the last 160 ns in the simulation of each system onto latent space; Encoded (dark gray) and decoded
structures (cornflower blue) for five systems (b) CAM0, (c) CAM1, (d) CAM2, (e) CAM3 and (f) CAM4.
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VAE latent space to structural fluctuations. The cal-
culations were carried out separately for each individ-
ual residue to obtain respective average displacement.
The original coordinates and modified coordinates
were projected onto the latent space as two different
latent points using the VAE encoder. The shift between
these points was calculated for all 20,000 frames to
obtain an average shift value. The 1-norm distance
between the two points for each pair of original coor-
dinates and modified coordinates was calculated. The
1-norm distance between two points (x1, y1) and
(x2, y2) was calculated as

d ¼ jx1 " x2jþ jy1 " y2j: ð7Þ

Both RMSF and 1-norm distance were calculated
and normalized by dividing individual values by the
maximum values to obtain the measurement of relative
flexibility for each residue in Toho-1 (Fig. 3(b)). Key
secondary structures with large RMSF values in three
domains are highlighted (Fig. 3(a)). The orange struc-
ture represents the loop connecting H2, H3, and H4.
The green structure represents the ! loop of Toho-1.
Residues 213 through 230, connecting H9, H10, and S5,
are illustrated in brown. Residues 266 through 275,
connecting S3 and H11, were illustrated in magenta.

The structural fluctuations calculated by RMSFs,
and low-dimensional VAE latent space displacements
have an adequate correlation with PCC around 0.78
(Fig. 3(b)). This positive correlation demonstrated that
sufficient biological information has been preserved in
the latent space and the distance in latent space could
be used to evaluate the conformational deviations.

3.2. Structural decoding capability

Latent space could be used to explore protein confor-
mational landscapes and even predict novel con-
formations based on existing MD simulations. It is
proposed that points sampled in the latent space not
belonging to the projected trajectories could lead to
new physically plausible conformations. These con-
formations could complement pre-existing samplings
and serve as new seeds for additional simulations.
Therefore, we selected several points in the latent space
not covered by existing trajectories of Toho-1 for
evaluation purposes. First, these points were decoded to
the three-dimensional Cartesian coordinates.
CHARMM program was used to minimize the system
energy to ensure the local structural integrity of gen-
erated structures, using the previously mentioned
CHARMM36m force field. The optimized structures
were subjected to MD simulations using OpenMM.
Similar to other OpenMM simulation procedures, the
systems were optimized and then heated (the temper-
ature increment is 10 K per picosecond). After 200 ps
NPT equilibrations at 310 K, these systems were sub-
jected to 20 ns NVT simulations, in which snapshots
were taken every 20 ps. Aligned structures before and
after minimizations and the RMSDs between them
were provided in Supporting Information (Fig. S6 and
Table S2).

In Fig. 4, the chosen points were represented by
larger blue points. The decoded structures from these
chosen points were projected back to the latent space
using the encoder and represented as purple star
points. The structures after minimization were also
projected back to the latent space using the encoder
and represented as red diamond points. The snapshots
of NVT simulations were then encoded and repre-
sented by red points.

The points selected outside the region of existing
trajectories shifted more than those picked inside after
energy minimizations. This is not surprising because
encoding distribution is regularized during the training
so the data on its latent space is more likely to dis-
tribute inside than outside. For the standard normal
distribution, 68% of the observations lie within 1

Fig. 3. (Color online) Evaluation of Toho-1 VAE model. (a) Most
flexible secondary structures for Toho-1; (b) Normalized RMSF
(red) and normalized displacement (blue). The position of three
missing residues (58, 239, 253) in 5KMW was marked by dashed
lines.

DOI: 10.1142/S2737416523500217
J. Comput. Biophys. Chem. 2023, 22 (4), 489–501 494

Journal of Computational Biophysics and Chemistry Research

J. 
C

om
pu

t. 
B

io
ph

ys
. C

he
m

. 2
02

3.
22

:4
89

-5
01

. D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
ifi

c.
co

m
by

 U
N

IV
ER

SI
TY

 O
F 

N
O

TT
IN

G
H

A
M

 o
n 

05
/2

5/
23

. R
e-

us
e 

an
d 

di
st

rib
ut

io
n 

is
 st

ric
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s a
rti

cl
es

.

https://dx.doi.org/10.1142/S2737416523500217


standard deviation of the mean; 95% lie within
two standard deviations of the mean; and 99.9% lie
within 3 standard deviations of the mean. In other
words, VAE works better for interpolation than
extrapolation.

Starting from the seed structures decoded by the
randomly picked points in latent space, these relatively
short simulations filled the empty space and com-
plemented the currently sampled region. This demon-
strated the capability and effectiveness of VAE in
exploring protein conformational spaces and com-
plementing the existing MD simulation trajectories.

In conclusion, the VAE encoder could produce a
low-dimensional conformational landscape from
existing MD simulation trajectories. The decoder could
generate new confirmations from unsampled areas
in latent space through projection to the high-
dimensional conformational space. To a certain extent,
VAE has good abilities of interpolations and fair abil-
ities of extrapolations to generate conformations with
good structural quality. The generated structures can be
used as seed structures for further simulations to
sample new conformations.

3.3. Latent space dimensionality

It is anticipated that VAE could perform better as the
latent space dimension increases, similar to PCA as
more total variance can be explained by retaining more
PCs. The latent space dimensionality is usually set
to two for convenience in visualizations and manual

seed-picking. With the help of computations, the latent
dimension could certainly be set to a higher number
and the sampling can be carried out in higher dimen-
sions without human intervention. Therefore, we
evaluated the impact of latent space dimensionality on
the reconstruction quality of the VAEs. The 20,000
frames of ubiquitin simulations as training data were
fed into a 4-layer VAE model with different numbers of
latent dimensions. Different numbers of neurons were
assigned to the hidden layers in each case but the ratio
between adjacent layers is set to four. The results of
different performance metrics versus latent space
dimensions were plotted for comparison (Fig. 5).

Two correlation-based metrics were used to measure
how well the information is preserved in the latent
space. Generally, both PCC and SCC values decrease
with increasing latent space dimensions. For the de-
coder module, RMSD and absolute percent error of the
DOPE score were used to compare the discrepancies
between the training and decoded structures. The ab-
solute percent error of the DOPE score, omitting the
one-dimension result, had an upward trend whereas
the average RMSD values had a declining trend (Fig. 5).

Another observation is that the model training
processes failed more with the increasing dimensions.
When the model training fails, the encoder projects
every frame to the same point in latent space. We
further investigated how latent space dimensions
influenced the latent vectors. Three VAE models were
trained with latent space dimensions of two, four, and
five, respectively. The reconstructed performance of 4D
VAE is similar to 2D VAEs, while the performance of

(a) (b)

Fig. 4. (Color online) New points encoded by NVT simulations from decoded structures of given points. (a) Inside area covered
by existing trajectories (points (0.2, 0.4), ("0.5, "1), ("1, 0.5)). (b) Outside area covered by existing trajectories (points ("2, "2), ("2, 2),
(2, "2), (2, 2)).
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5D VAE is significantly better than the 2D and 4D
VAEs (Fig. 6).

The distributions of latent vector values projected
from simulation frames are plotted in Supporting

Information (Fig. S7) and the variances are listed in
Table 1.

Two latent vectors of 4D have extremely small
variances, indicating that the encoder projected points
to almost the same position in these two dimensions
(Table 1). In this case, these two dimensions do not
contain significant information from the high-
dimensional space and are trivial in the latent space.
With only two predominant latent vectors taking effect,
the 4D model performance is similar to the 2D
model on RMSD (Fig. 6). The 5D model has four

(a) (b)

(c) (d)

Fig. 5. (Color online) Performance assessment results for ubiquitin simulations using VAE of various dimensions of latent spaces.
(a) Pearson correlation coefficient, (b) Spearman correlation coefficient, (c) average RMSD for all simulation structures, and (d) absolute
percent error of DOPE score for all simulation structures. Four hidden layers’ variational autoencoder was implemented for each model with
different latent space dimensions. For each model, the results were obtained from 10 parallel model buildings.

Fig. 6. (Color online) RMSD values with different latent space
dimensions.

Table 1. Variances of latent vectors in different VAE models.

2D 4D 5D

Latent Vector 1 0.49694 3:8911' 10"5 0.51871
Latent Vector 2 0.51171 4:3879' 10"6 0.46156
Latent Vector 3 N/A 0.52630 0.52309
Latent Vector 4 N/A 0.52567 0.50389
Latent Vector 5 N/A N/A 4:1286' 10"6
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predominant latent vectors carrying information
from the high-dimensional space and had improved
performance.

4. DISCUSSION

Variational autoencoders (VAEs) are deep latent
embedding models consisting of two modules in an
autoencoder structure. The encoder network, an in-
ference model, learns to map data points to low-
dimensional latent vectors, while the decoder network,
a generative model, learns to reconstruct high-
dimensional data points from the latent encodings.61

The ability of VAEs trained on structures from MD
simulations as a tool for enriching the molecular con-
formational space sampling was assessed in this paper
from several aspects.

First, a good latent representation space should
convey sufficient information on protein conforma-
tions. The remarkable ability to differentiate con-
formations with substantial differences was shown in
the latent space of VAEs. Calmodulin had a large
conformational change upon binding with calcium
ions. Those systems with different amounts of Ca2þ

bound with EF-loops had large conformational differ-
ences, which were captured by VAE. Different groups
were located at different regions in latent space with
certain gaps. Meanwhile, the fluctuations during MD
simulations of residues correspond to the shift in latent
space. The magnitude of the shift in latent space could
reflect the local structure flexibility, indicating that the
minor conformational differences could also be cap-
tured by VAE.

Second, VAE was expected to serve as a tool for
enhanced sampling methods. Enhanced sampling could
be accomplished by selecting points in latent space as
needed. For instance, points could be chosen at the
“frontiers” of covered regions,22 or by prior knowledge
about a specific protein.32 In this study, new points
were randomly picked from the unsampled regions,
and the decoded structures were employed as seed
structures for MD simulations. Energy minimizations
were conducted to guarantee local structure integrity
before simulations. The structure deviations of points
inside the simulation-sampled region were smaller than
those of points outside the sampled region. This indi-
cates that VAE could be used to generate physically
plausible structures and VAE works better in inter-
polations than extrapolations to generate new con-
formations. This was consistent with the fact that VAE
distributes data in latent space to approximate normal

distribution so that the outlying regions have lower
probabilities to be visited (lower probabilities to form
thermodynamically accessible structures).

Increasing the latent space dimensions appears to be
a solution for high-resolution reconstructions of pro-
tein conformations with VAE as larger latent dimen-
sions allow more information in the original sample
space to be retained. However, the difficulty of robustly
training the VAE models increases rapidly with the
latent dimensions, given the same number of training
samples. The optimization constraint of VAE requires
that the latent space distribution of each batch of input
approximates a normal distribution. The sparse dis-
tributions of the high dimensional latent vectors during
the training would likely fail to approximate the normal
distribution in the same dimension. This explains why
the model building with higher latent space dimensions
failed more frequently than those with lower dimen-
sions. In the comparative study, not all dimensions
successfully obtained enough variances to convey in-
formation, which explains the volatility of model per-
formance when increasing the latent space dimensions.
The sampling benefits from better model performance
but there are trade-offs between visualization, perfor-
mance, and obstacles with increasing latent space
dimensions. Currently, the sampling is based on
two-dimensional latent space. The sampling with
higher dimensions could be promising with better
computing resources.

VAE exhibits enormous potential to be a tool for
exploring protein conformations and can be further
developed for enhanced sampling. Based on our
investigations, we have several further perspectives for
VAE applications. In this study, the input features are
normalized Cartesian coordinates of all heavy atoms so
the decoder module could easily rebuild the decoded
protein structures. Many other descriptors, such as
pairwise alpha carbon (C") distances of the backbone,
and torsional angles, could also be used as input fea-
tures. Different descriptors might lead to varying effects
in the representation performance and generated
structure rationality. It is observed that more flexible
and unstructured regions of the protein are less accu-
rately reconstructed than the secondary structures.
Introducing additional representation variables for
specific areas could possibly increase desired structural
information embedded into the model and enhance the
encoding. However, this might cause a problem in
decoding part to reconstruct structures from low di-
mensional space. This is because those local structural
variables may be redundant and dependent on each
other. Input data quality is another key factor since
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building a better VAE model demands more high-
quality data. One suggestion is that the input data
should cover simulations starting from as many known
conformations as possible to expand the knowledge of
the VAE model. Concentrating around a certain
starting structure leads to miss of key information
about other conformations with substantial confor-
mation differences. In this case, the VAE model can be
hardly used to explore those completely different con-
formations. Moreover, normal MD simulations may
contain excessive snapshots surrounding structures at
low free energy states. Using these excessive snapshots
in training may lead to undesired bias in the model.
Filtration of the excessive simulation frames might be a
practical technique to address this. Alternatively,
training the autoencoder model using data from
metadynamics simulation could be another suitable
way to address the issue of excessive low-energy
snapshots and high dimensional vectors in sparse latent
space.

In addition to the applications presented in this
study, the presented autoencoder models have many
potential applications in protein simulations and
analysis. For example, the latent space and associated
decoder could be used to enhance the sampling effi-
ciency of protein simulations. The latent space could be
used for clustering analysis and Markov State Model
development to investigate the kinetics of protein
conformation transitions.

5. CONCLUSION

Variational autoencoders are unsupervised learning
models designed to encode an input to a low-
dimensional latent space and decode it for recon-
struction. The encoded latent vectors are therefore
expected to capture the key representational infor-
mation of the input space. In this work, we have
evaluated the viability of using variational auto-
encoders to assist protein conformational landscape
exploration. VAEs are demonstrated to be capable of
retaining high-dimensional information to distinguish
protein conformations and generate yet-to-be-accessed
protein conformations for initializing further simula-
tions. It is also noteworthy that VAE works better for
interpolation than extrapolation and increasing latent
space dimension can lead to a trade-off between
performances and obstacles. VAE could serve as a tool
to explore the protein conformations with future
studies.
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