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Abstract

Allostery plays a crucial role in regulating protein activity, making it a highly sought-

after target in drug development. One of the major challenges in allosteric drug

research is the identification of allosteric sites. In recent years, many computational

models have been developed for accurate allosteric site prediction. Most of these

models focus on designing a general rule that can be applied to pockets of proteins

from various families. In this study, we present a new approach using the concept of

Learning to Rank (LTR). The LTR model ranks pockets based on their relevance to

allosteric sites, that is, how well a pocket meets the characteristics of known alloste-

ric sites. After the training and validation on two datasets, the Allosteric Database

(ASD) and CASBench, the LTR model was able to rank an allosteric pocket in the top

three positions for 83.6% and 80.5% of test proteins, respectively. The model outper-

forms other common machine learning models with higher F1 scores (0.662 in

ASD and 0.608 in CASBench) and Matthews correlation coefficients (0.645 in ASD

and 0.589 in CASBench). The trained model is available on the PASSer platform

(https://passer.smu.edu) to aid in drug discovery research.
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1 | INTRODUCTION

Allostery is a biological process where an effector molecule binds to

an allosteric site that is distant to the active site of a protein. This

binding results in conformational and dynamic changes that can regu-

late the protein's function, making it a key aspect of cellular signaling

and is considered as the second secret of life.1-4 Despite its impor-

tance, the allosteric mechanisms of most proteins remain elusive. A

universal protein allosteric mechanism has yet to be formulated.5,6

Allostery offers several advantages in drug development. Com-

pared to orthosteric site binding, allosteric site binding provides a con-

trolled regulation of protein function that can either activate or inhibit

the binding of ligands at orthosteric sites.7 Additionally, allosteric

modulators are reported to have fewer side effects with no additional

pharmacological effects once allosteric sites are saturated.8

Furthermore, allosteric sites experience low evolutionary pressure,

ensuring the safety of on-target drugs.9,10 These benefits make allo-

steric drug development a promising field and offer substantial advan-

tages over orthosteric drug development.

Identifying appropriate allosteric sites is a major challenge in allo-

steric drug development.11,12 In recent years, numerous computa-

tional methods for allosteric site identification and prediction have

been developed. With the help of machine learning (ML), Allosite13

applies support vector machine (SVM) to learn the physical and chem-

ical features of protein pockets. Another ML-based approach, the

three-way random forest (RF) model developed by Chen et al.,14 is

capable of predicting allosteric, regular, or orthosteric sites.

PASSer15-17 is a recently developed method that combines extreme

gradient boosting (XGBoost)18 with a graph convolutional neural net-

work19 to learn physical and topological properties without any prior
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information. In addition to ML, traditional methods such as normal

mode analysis20 and molecular dynamics21 are widely used to investi-

gate the communication between regulatory and functional sites,

including SPACER22 and PARS.23

Some efforts were spent to develop allostery databases for train-

ing and benchmark purposes. Allosteric Database (ASD) contains

1949 entries of protein-modulator complexes with annotated alloste-

ric residues.24 ASBench is a smaller benchmark dataset generated

based on the ASD.25 Both ASD and ASBench are used in the current

study for the training and benchmarking purposes. The CASBench

benchmark set contains 91 proteins which structures are annotated

based on the experimental information from ASD, Catalytic Site Atlas,

and Protein Data Bank.26,27 ASD and CASBench can be accessed at

http://mdl.shsmu.edu.cn/ASD and https://biokinet.belozersky.msu.

ru/casbench, respectively. These datasets play a crucial role in training

and evaluating allosteric site prediction models.

Most previous research on prediction models focused on devel-

oping universal models for allosteric site prediction. These models

intend to make “absolute” predictions (either as labels or probabilities)
for all pockets detected in different types of proteins, which is a chal-

lenging and time-consuming task. Learning to Rank (LTR), as an

emerging area, was first applied in information retrieval28 and has

been used in many bioinformatics studies, ranging from drug-target

interaction prediction29 to compound virtual screening.30 Unlike

“absolute” predictions, LTR models provide “relative” predictions by

ranking objects from the most to the least relevant to a target, making

it a more achievable and reasonable approach for allosteric site

prediction.

In this study, we present the state-of-the-art ML model on allo-

steric site prediction with LTR. The LTR model is implemented using

LambdaMART. LambdaMART combines gradient boosting decision

tree (GBDT) with the loss function derived from LambdaRank, a LTR

algorithm. Compared with other ML models such as XGBoost, SVM,

and RF, LambdaMART achieved the highest F1 score and Matthews

correlation coefficient (MCC). Moreover, this model has a better abil-

ity to rank actual allosteric sites at top positions. The trained Lambda-

MART model is freely available at PASSer (https://passer.smu.edu) to

facilitate related research.

2 | METHODOLOGY

2.1 | Allosteric protein databases

Two databases were used to train and validate different ML models,

including the ASD and CASBench.

In the latest version of ASD, there are 1949 entries of protein-

modulator complexes. To ensure data quality, a cleaning process is

applied to the protein-modulator complexes based on standards pro-

posed in the Allosite study.13 Three standards, including high-

resolution protein structures with a resolution smaller than 3 €A, the

presence of a complete structure in the allosteric site, and a low

sequence identity threshold of 30%, was applied to select high-quality

and sequence-diverse proteins in the overall training set. If two or

more proteins have high sequence identity, the one with the shortest

modulator-pocket distance is retained to ensure the finest labeling.

The modulator-pocket distance calculation is described below in

Section 2.2. A total of 207 proteins were selected in the overall train-

ing set and were randomly split into a training set (80%) and a test set

(20%). To facilitate the cleaning process, a data processing pipeline

script has been created and made available as open source on GitHub

(https://github.com/smu-tao-group/PASSerRank).

The CASBench dataset was used as an external test set. The CAS-

Bench benchmark set comprises proteins annotated with allosteric sites,

but only those entries that include both allosteric ligands and sites were

included. Additionally, proteins that were already present in the ASD

dataset were removed to ensure the validity of the benchmark set.

Through cleaning, 71 out of 91 proteins were selected for validation.

2.2 | Pocket descriptors and labeling

FPocket is an open-source software for protein pocket detection.31 In

this work, FPocket was applied on each protein to detect protein

pockets. On average, 21 pockets were detected in each protein, with

a total of 4413 pockets in 207 proteins. For each detected pocket,

19 physical and chemical features are calculated, ranging from score,

volume, solvent accessible surface area, to hydrophobicity. A com-

plete list of feature names is shown in Figure 2. Specifically, the

FPocket score is calculated using a scoring function which includes

five features (number of alpha spheres, mean local hydrophobic den-

sity, proportion of apolar alpha sphere, polarity score, and alpha

sphere density). These features are normalized to 0–1 scale within

each protein and the function is fitted using FPocket training data-

set.31 The FPocket score has little overlap with the other 18 features

used in the present study.

To label each pocket as an allosteric or nonallosteric site, we have

automated the process by assigning the closest pockets to the modula-

tor as the allosteric site. The center of mass is first calculated for all

pockets and the modulator, and then the pairwise distances between

the pockets and the modulator are computed. The pocket with the

shortest distance is labeled as positive (allosteric site), while all other

pockets are labeled as negative (nonallosteric site). However, if the clos-

est distance is greater than 10 Å, this entry is removed from

the dataset, as such a large distance may indicate inaccurate pocket

detection and negatively impact model performance. It should be noted

that this labeling strategy may lead to false negative cases where the

pockets labeled as nonallosteric are allosteric in other protein-

modulator settings. However, the potential false negative cases are

considered unlikely and less problematic because the main purpose of

the prediction method is identifying allosteric sites as true positives.

2.3 | Learning to rank

Prior researches on allosteric site prediction focus on developing a

universal model that can accurately predict allosteric sites in all pro-

teins. However, in practice, it is more important to identify the most
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promising pockets within each individual protein.32 Therefore, a ML

model that is capable of ranking pockets in order of their likelihood

to be allosteric sites is more desirable and attainable than a binary

classification model that provides absolute predictions for all

pockets.

In this study, we implemented the LTR algorithm using GBDT

and the LambdaMART method. GBDT is a popular ML approach that

iteratively learns from decision trees and ensembles of their predic-

tions. Here, we use LightGBM,33 one of the two popular implemen-

tations of GBDT, over XGBoost.18 LambdaMART is an LTR method

that trains GBDT with the lambdarank loss function. The lambdarank

loss function optimizes the value of the normalized discounted

cumulative gain (NDCG) for the top K cases, and is calculated using

discounted cumulative gain (DCG) and ideal discounted cumulative

gain (IDCG) as:

DCG@K ¼PK

i¼1

2Gi �1
log2ðiþ1Þ , ð1Þ

IDCG@K ¼PK

i¼1

2jGji �1
log2ðiþ1Þ , ð2Þ

NDCG@K ¼ DCG@K
IDCG@K

, ð3Þ

where Gi is the gain (graded relevance value) at position i and jGj is
the ideal ranking.

The LGBMRanker module in the LightGBM package (v3.3.4) was

used to implement the LambdaMART algorithm with GBDT as boost-

ing type and lambdarank as the objective function.

2.4 | ML models

In addition to the LTR model, other commonly used ML models in

allosteric site prediction were considered for comparison.

XGBoost and RF are tree-based models. As previously stated,

XGBoost is an implementation of the GBDT model that could also

be used to train the LTR model. The RF model employs a bagging

approach, training several independent decision trees in parallel.

The prediction of RF is obtained through the weighted average of

the outputs of all decision trees. The SVM classifier, on the other

hand, learns a high-dimensional hyperplane that separates data

points based on their labels. The XGBoost algorithm was imple-

mented using the XGBoost package (version 1.7.3), and the RF

and SVM classifiers were implemented using the Scikit-learn

package (version 1.2.0).34

SHapley Additive exPlanations (SHAP) value is a method to

increase model interpretability by quantifying feature importance. It

has been implemented recently to explain tree-based models.35 In this

study, the SHAP values of 19 features from FPocket were calculated

and compared. The method is implemented in the SHAP package

(v0.41.0).36

2.5 | Performance criteria

Several metrics were calculated to compare and evaluate different ML

models. Precision, recall, and specificity are good indicators for binary

classification. The F1 score is a weighted measure of precision and

recall. Moreover, it is reported that the MCC is a more suitable indica-

tor than the F1 score and accuracy in binary classification

evaluation.37

Precision ¼TP=ðTPþFPÞ: ð4Þ

Recall ¼TP=ðTPþFNÞ: ð5Þ

Specificity ¼TN=ðTNþFPÞ: ð6Þ

F1 score ¼2∗Precision∗Recall=ðPrecisionþRecallÞ: ð7Þ

Accuracy ¼ðTPþTNÞ=ðTPþFPþFNþTNÞ: ð8Þ

MCC ¼ TP∗TN�FP∗FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðTPþFPÞ∗ ðTPþFNÞ∗ ðTNþFPÞ∗ ðTNþFNÞ:p ð9Þ

The percentage of actual allosteric sites that are ranked among

the top 1, 2, and 3 positions is calculated. This metric has been com-

monly used in evaluating various allosteric site prediction models.23,38

The actual allosteric sites are compared with the predicted top three

most probable pockets in each protein, and the percentage is calcu-

lated and accumulated for each position.

3 | RESULTS

FPocket was used to identify potential pockets in each protein. To

ensure that the allosteric site and modulator are in contact, a distance

threshold was imposed on the closest pocket. The effect of different

distance thresholds on the percentage of proteins included in the

training set is shown in Figure 1A, with a final distance threshold of

10 €A chosen to avoid the inclusion of incorrectly labeled pockets.

Consequently, 91.1% of proteins from the ASD were included in the

training set. To avoid over-representation of highly similar proteins,

the pairwise sequence similarity was calculated at protein level

between each newly selected protein and all previously selected pro-

teins. If the similarity was higher than a specified threshold, the

protein structure was discarded. The effect of different sequence

identity thresholds is shown in Figure 1B, with a final threshold of

30% chosen. After these steps, 207 proteins were included in the

overall training set.

We randomly selected 80% of these proteins as the training set

and used the remaining 20% as the testing set. A total of four ML

models, including LambdaMART, XGBoost, RF, and SVM, were

trained through fivefold grid search with cross validation. The grid

search takes an exhaustive search strategy over all combinations

of prespecified parameter values. All models were trained on a
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high-performance-computing platform with a 60GB memory V100

graphical processing unit. Different combinations of parameter

values were tested to optimize the performance of the prediction

models. A full list of parameter names and values is available

at https://github.com/smu-tao-group/PASSerRank/blob/main/src/

utils/params.json. The set of parameters which had the best per-

formance on the training set was determined. For comparison, the

performance of FPocket is reported, in which the pocket with the

highest score was treated as the positive (allosteric) prediction

and others as negative (nonallosteric) predictions based on

FPocket results. Similarly for the LambdaMART predictions, the

pocket with the highest prediction score in each protein was

labeled as positive. This explains that precision and recall metrics

have the same number in LambdaMART and FPocket models,

respectively, as there is only one positive prediction. If this posi-

tive prediction is wrong, we have a false positive, and there will

also be a false negative, leading to the same number of FP and FN

and thus the same value of precision and recall defined in Equa-

tion 4 and 5.

All models were evaluated using the testing set of ASD. The

results are listed in Table 1. The percentage of true allosteric sites

that appeared in the predicted top 1, 2, and 3 positions was calcu-

lated and abbreviated as Top 1, 2, and 3, respectively. The perfor-

mance of four ML models was compared with FPocket. Both

LambdaMART and XGBoost exhibited better performance than

FPocket under all or most metrics. RF and SVM were comparable to

FPocket with higher F1 scores, MCC, and Top 3 percentage. Lamb-

daMART achieved the best performance in eight out of nine metrics

among all models.

These models were further evaluated using the CASBench data-

set. The CASBench training dataset was prepared with the same

procedures as the ASD training data. In addition, the proteins

included in the ASD training data were excluded in the CASBench

set to ensure the evaluation validity. The same metrics were

calculated, and the results are listed in Table 2. Compared with the

numbers reported in Table 1, the performance of all models was

decreased but within an acceptable range. Overall, LambdaMART is

superior to FPocket and leads in 7 out of 9 metrics. This demon-

strates the ability of LambdaMART to rank protein pockets in terms

of the relevance to allostery, which leads to a high F1 score, MCC,

and Top 3 percentage.

The feature importance of the LambdaMART model was ana-

lyzed using SHAP values. As shown in Figure 2, the SHAP value dis-

tributions and mean SHAP values were displayed in descending

order. Figure 2 shows the distribution and mean SHAP values of the

features in descending order. The results indicate that the FPocket

score was the most important feature and significantly outper-

formed all other features. This highlights the effectiveness of the

FPocket score in differentiating between allosteric and nonallosteric

sites. Other features that were found to be important include the

volume score, flexibility, charge score, and total solvent-accessible

surface area (SASA). As seen from the SHAP value distribution, allo-

steric sites (represented in red) tend to have high FPocket scores,

high volume scores, high charge scores, but low flexibility and low

total SASA.

The trained LambdaMART model has been made accessible to

the public through the PASSer platform (https://passer.smu.edu).

Users can access the model either through the webpage or through

the command line interface using the PASSer API (https://passer.

smu.edu/apis/). To demonstrate the efficacy of the model, two

examples that were not part of the training and validation sets are

presented in Figure 3. These examples show the predicted allosteric

sites of the light-oxygen-voltage domains of Phaeodactylum tricornu-

tum Aureochrome 1a39 and Avena Sativa phototropin 140 obtained

using the LambdaMART model. The top 3 pockets are highlighted in

red, orange, and yellow, respectivley, and with the corresponding

predicted relevance scores. The top 1 predicted pockets illustrated

in red are actual allosteric sites in both cases.

F IGURE 1 The number of proteins included in the training set, along with different distance and sequence identity thresholds. (A) The
minimum distances between the center of masses from pockets to the modulator in each protein were calculated. A protein-modulator complex
is discarded if the minimum distance is higher than the threshold. With the threshold being set as 10 Å, 91.1% of proteins were included. (B) To
ensure uniqueness, proteins with high sequence identity were removed. The threshold was set as 30%. A total of 207 proteins are included in the
training set.

4 TIAN ET AL.
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4 | DISCUSSION

The collection and cleaning of training data is a crucial step for the

development of a high-performing ML model. The study by Huang

et al.13 applied three rules to select protein structures from the ASD

dataset and curated a training set of 90 proteins. However, there is no

available script to automate this process, which can result in an unfair

model comparison. To address this issue, an open-source script to

prepare ML-ready dataset is provided. This pipeline offers a simple

and customizable benchmark preparation for evaluating various ML

models. It should be noted that in the current design, proteins with

multiple modulators in the same chain are discarded, as this can result

in inconsistent ratios of allosteric and nonallosteric sites in each pro-

tein. Further refinement of the data cleaning process can lead to

higher-quality training data. It could be feasible to develop pretrained

models based on the nonallosteric data to be used to refine the allo-

steric site prediction models. However, the amount of nonallosteric

protein data significantly exceeds the amount of allosteric protein

data, leading to the data imbalance issue in the model development

for allosteric sites prediction. In the current implementation, FPocket

could detect over 10 pockets in one protein and typically only one is

allosteric. Therefore, a pretrained model based on the nonallosteric

data was not considered in this study. During dynamical processes of

protein with significant conformational changes, hidden allosteric sites

might appear with new conformations. The current method could be

applied on selected conformations from dynamical process of proteins

to reveal hidden allosteric sites associated with conformational driven

allostery. There are other approaches to address this issue, including a

recently reported prediction model, TopoAlloSite, for the prediction

of cryptic allosteric sites.41

Efforts have been invested in developing a universal model for

allosteric site prediction by learning pockets from different proteins

without considering the protein itself, such that all detected pockets

from proteins in the training set are gathered and shuffled in a pool

for training purposes. This approach, however, poses a challenge in

model design and requires a model to learn a general rule that applies

to all proteins of various families. Additionally, this training process is

not reflective of real-world applications, where all pockets in a target

protein need to be compared to determine the most probable ones. In

light of these challenges, we offer a new perspective to rank pockets

in each protein. The model focuses on the protein level and learns a

ranking pattern among pockets. The proposed LambdaMART model

outperforms other popular ML models such as XGBoost and SVM,

with high F1 score and MCC, and is capable of ranking actual

TABLE 1 Performance comparison of
machine learning models on the
Allosteric Database dataset.

Metric LambdaMART XGBoost RF SVM FPocket

Precision 0.662 " 0.586 " 0.528 # 0.444 # 0.556

Accuracy 0.968 " 0.961 " 0.956 # 0.944 # 0.958

Recall 0.662 " 0.609 " 0.677 " 0.758 " 0.556

Specificity 0.983 " 0.979 " 0.970 # 0.953 # 0.978

F1 score 0.662 " 0.596 " 0.593 " 0.559 " 0.556

Matthews correlation

coefficient

0.645 " 0.577 " 0.575 " 0.554 " 0.536

Top 1 59.5% " 56.6% " 58.0% " 57.5% " 55.6%

Top 2 73.9% " 69.6% # 71.0% # 69.6% # 71.5%

Top 3 83.6% " 80.7% " 79.7% " 78.3% " 76.8%

Abbreviations: RF, random forest; SVM, support vector machine; XGBoost, extreme gradient boosting.

TABLE 2 Performance comparison of
machine learning models on the
CASBench dataset.

Metric LambdaMART XGBoost RF SVM FPocket

Precision 0.608 " 0.504 # 0.431 # 0.395 # 0.550

Accuracy 0.963 " 0.953 # 0.941 # 0.932 # 0.956

Recall 0.608 " 0.657 " 0.767 " 0.803 " 0.550

Specificity 0.980 " 0.968 # 0.950 # 0.939 # 0.977

F1 score 0.608 " 0.569 " 0.551 " 0.529 # 0.550

MCC 0.589 " 0.551 " 0.548 " 0.534 " 0.527

Top 1 56.3% " 52.5% # 44.1% # 57.3% " 55.5%

Top 2 73.7% " 70.0% # 68.4% # 73.2% " 71.4%

Top 3 80.5% " 77.0% " 76.6% # 76.0% # 76.7%

Abbreviations: MCC, Matthews correlation coefficient; RF, random forest; SVM, support vector machine;

XGBoost, extreme gradient boosting.
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allosteric sites at the top positions. This demonstrates that it is more

effective to learn the relative differences among pockets rather than a

universal law applicable to all proteins.

In the context of allosteric site prediction, explainable ML is

important as it helps researchers understand how a model arrives at

its predictions. This information can be useful in drug design, as it

can provide insights into the influencing factors that whether a

pocket is likely to be an allosteric site. Tree-based models, such as

RF and gradient boosting decision tree, have good explainability as

they can use metrics like Gini impurity to determine feature impor-

tance. SHAP values, a method from cooperative game theory, can

also be used to quantify the contribution of each feature to the pre-

dictions made by a ML model. In this study, the SHAP values were

used to indicate that the FPocket score was the most crucial fea-

ture, which aligns with the good performance of FPocket as a

benchmark model.16 The SHAP values also revealed that the model

tends to predict pockets with high charge, volume, and low flexibil-

ity as allosteric sites, which can benefit the development of alloste-

ric drugs.

5 | CONCLUSIONS

The prediction of allosteric sites is crucial to the development of allo-

steric drugs. While many efforts have been dedicated to constructing

a universal model for such prediction, this study presents a novel

approach by employing a ranking model through the learning to rank

concept. The proposed model outperforms other ML models based on

various performance metrics, including a high rate of ranking true allo-

steric sites at top positions. Furthermore, a customizable pipeline is

provided for the preparation of high-quality proteins for training

F IGURE 2 SHapley Additive
exPlanations (SHAP) value
distributions and mean values of
19 features. These features are
calculated from FPocket. Red and
black colors indicate positive and
negative samples, respectively.
FPocket score was identified as the
most important feature.

F IGURE 3 Predictions of the light-oxygen-voltage domains from
(A) Phaeodactylum tricornutum Aureochrome 1a and (B) Avena Sativa
phototropin 1. In each protein system, top 3 pockets with the highest
rank scores are highlighted in red (first), orange (second), and yellow

(third) colors, respectively. Corresponding rank scores are displayed
next to each pocket in the same color. The top 1 pocket from both
examples illustrated in red are the actual allosteric sites.

6 TIAN ET AL.
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purposes. The trained model is deployed on the PASSer platform

(https://passer.smu.edu) and is readily available for public usage.
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