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ABSTRACT

Allostery refers to the biological process by which
an effector modulator binds to a protein at a site dis-
tant from the active site, known as allosteric site.
Identifying allosteric sites is essential for discov-
ering allosteric process and is considered a criti-
cal factor in allosteric drug development. To facili-
tate related research, we developed PASSer (Protein
Allosteric Sites Server) at https://passer.smu.edu, a
web application for fast and accurate allosteric site
prediction and visualization. The website hosts three
trained and published machine learning models: (i)
an ensemble learning model with extreme gradient
boosting and graph convolutional neural network,
(ii) an automated machine learning model with Auto-
Gluon and (iii) a learning-to-rank model with Lamb-
daMART. PASSer accepts protein entries directly
from the Protein Data Bank (PDB) or user-uploaded
PDB files, and can conduct predictions within sec-
onds. The results are presented in an interactive win-
dow that displays protein and pockets’ structures, as
well as a table that summarizes predictions of the top
three pockets with the highest probabilities/scores.
To date, PASSer has been visited over 49 000 times in
over 70 countries and has executed over 6 200 jobs.
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INTRODUCTION

Allostery is a critical biological process in the regulation of
protein activity. It involves the transmission of the effect
of a small molecule binding from the allosteric site to the
active site, leading to protein conformational and dynamic
changes (1). There are many characteristics of allosteric
processes that can be harnessed in drug design: (a) allosteric
site is conserved and highly specific in the evolution of pro-
teins (2,3), (b) allosteric drugs can activate or inhibit pro-
tein activities in a controlled manner, leading to potential
therapeutic effects (4), and (c) once the allosteric site is sat-
urated, there are no further therapeutic effects (5). For these
reasons, the study of allosteric sites is vital in allosteric drug
development and has gained significant attention over the
last decade. In fact, it has been recognized as the ‘second
secret of life’ (6).

Several computational methods have been developed for
the prediction of allosteric sites based on protein dynamics
including normal mode analysis (NMA) (7) and molecular
dynamics (M D) simulations (8). For instance, PARS (9) em-
ploys NMA to identify protein sites that can transmit or me-
diate allosteric signals, while SPACER (10) combines NMA
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and MD simulations to evaluate allosteric sites. Recently,
many machine learning-based models have been demon-
strated improved prediction performance. Allosite (11) and
AlloPred (12) employ support vector machines (SVMs) to
learn the physical and chemical features of protein pock-
ets. Chen et al. (13) uses random forests (RFs) to build a
three-way model to predict allosteric, orthosteric, and non-
functional pockets. Among the prediction models, Allosite,
PARS, and AlloPred are accessible as websites.

In this study, we introduce PASSer (Protein Allosteric
Sites Server, https://passer.smu.edu), a web server that pro-
vides fast and accurate allosteric site prediction. PASSer
offers three trained and published machine learning-based
models: (a) an ensemble learning model consisting of ex-
treme gradient boosting (XGBoost) and graph convolu-
tional neural network (GCNN) (14), (b) an automated ma-
chine learning model powered by AutoGluon from Ama-
zon Web Services (AWS) (15), and (c) a learning-to-rank
model with the boosted tree version of LambdaRank ob-
jective on LightGBM (16). PASSer is deployed on South-
ern Methodist University High-Performance Computing
(HPC) clusters that can complete prediction within seconds.
The website does not require any login credentials. Users
can submit a Protein Data Bank (PDB) (17) ID or PDB
file, and all source files are deleted after calculation is com-
pleted. PASSer displays an interactive window that show-
cases the protein structure with highlighted pocket struc-
tures, along with a table summarizing the top protein pock-
ets. Users can also download a .zip file containing protein
and pocket PDB files, visualization scripts for Visual Molec-
ular Dynamics (VMD) (18) and PyMOL (19), and predic-
tion results. Since its launch in 2020, PASSer has received
over 49 000 visits and completed over 6 200 jobs.

MATERIALS AND METHODS
Website implementation

PASSer models are implemented in Python language and
the web service is built using the Python Django web frame-
work (v3.1.2). PASSer provides three methods for allosteric
site prediction. Below are the dependency packages and
versions for each method: (a) ensemble learning: XGBoost
package v1.3.3 (20) and DGL v0.4.3 (21); (b) automated
machine learning: AutoGluon v0.3.1 (22); (c) learning-to-
rank: LighGBM v3.3.4 (23). On the result page, an inter-
active window powered by the JavaScript framework JSmol
(24) is provided to visualize protein and pocket structures.
The website is hosted on SMU HPC (https://www.smu.edu/
Provost/Data-Science-Institute/HPC) to provide substan-
tial computing resources.

Workflow overview

On the PASSer’s main page, users can submit jobs without
login requirement. They can do so by providing an exist-
ing PDB ID from the Protein Data Bank or by uploading
their own PDB files. When a PDB ID is submitted, PASSer
scrapes the corresponding PDB file from the RCSB PDB
website. Users can also specify the chain ID if there are
multiple chains in the PDB file. FPocket, a geometry-based

pocket detection package (25), is then used to detect poten-
tial protein pockets in the resulting protein structure (25).
The user-selected machine learning model is applied for
the prediction of detected pockets. In the ensemble learn-
ing method, XGBoost (20) learns 19 physical and chemi-
cal features calculated by FPocket. GCNN (26) builds an
atomic graph for each pocket to learn the local connectivity
at atomic level. The final predicted probability is the average
of probabilities generated from XGBoost and GCNN. In
the automated machine learning model, the pocket descrip-
tors are fed into a AutoGluon model (22) for prediction,
which consists of 14 base models, such as SVM and RF. A
full list of these base models is available in the supporting
information of a previous study (15). For the learning-to-
rank model, all pockets in a given protein are ranked with
regard to their relevance of being allosteric sites. The en-
semble learning and automated machine learning models
report predicted probabilities of the top 3 pockets, while the
learning-to-rank model reports rank scores. A detailed de-
scription of these methods can be found in previous stud-
ies (14-16). A link is provided to download a .zip file con-
taining protein and pocket PDB files, visualization scripts,
and a list of prediction results for all detected pockets.

RESULTS AND DISCUSSION
Dataset collection

Collecting and cleaning allosteric proteins is crucial to pro-
duce high-quality datasets and well-performed models (27).
Although the availability of allosteric site databases, such as
AlloSteric Database (ASD) (28), ASBench (29) and CAS-
Bench (30), provides a new opportunity to design allosteric
site prediction models, the lack of a standardized approach
for preparing machine learning-ready datasets can hinder
such development. The latest model of PASSer, i.e. the
learning-to-rank model, presents a workflow to produce
the training data with Python implementation. The scripts
are available on GitHub at https://github.com/smu-tao-
group/PASSerRank. To our knowledge, this is the first
open-source repository to automate the data preparation
process. This could establish a benchmark for future model
training and validation. Specifically, two datasets (ASD and
CASBench) were used in training and validating machine
learning models.

The latest version of ASD contains 1 949 protein entries,
in which each entry includes information of protein, mod-
ulator, and allosteric residues. Following a data cleaning
workflow proposed by Huang ez al. (11), those proteins were
filtered out if they (i) have low resolution (>3 A); (ii) have
missing residues in the allosteric site; or (iii) have similar
structures (sequence identity threshold > 30%).

The remaining proteins were analyzed using FPocket. To
automate the pocket labeling process where a pocket is la-
beled as allosteric (positive) or non-allosteric (negative), we
define the pocket nearest to the modulator as the allosteric
site and all other pockets as non-allosteric sites. In each pro-
tein, the Euclidean distances between the center of masses
in its modulator and all pockets are calculated. Those pro-
teins were removed if the closest pocket to the modulator is
>10 A. Through the data cleaning steps above, 207 proteins
were included to train machine learning models.
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CASBench was used as an external test set. Proteins that
did not meet the data cleaning standards mentioned above
were removed, which leads to a test set consisting of 1 049
proteins. The ASD-trained machine learning models were
tested on this CASBench test set.

The processed ASD and CASBench data can be down-
loaded from the PASSer website and users can customize
the data preparation step using the Python scripts in the
provided GitHub repository.

It should be noted that the previous two models (ensem-
ble learning and automated machine learning) were trained
and tested on smaller training datasets. 90 ASD proteins
were used to train the ensemble learning model. A full list
of these proteins is available in the supporting information
of Huang et al. (11). In addition to these proteins, the core-
diversity set of ASBench (138 proteins) were included to
train the automated machine learning model. After remov-
ing duplicate records, this model was trained on 204 pro-
teins.

Model training

To train the ensemble learning and automated machine
learning models, the proteins were randomly split into a
training set (60%), a validation set (20%) and a test set
(20%). Models with different hyperparameter settings were
trained on the training set with performance metrics cal-
culated on the validation set. The hyperparameter setting
leading to the highest performance was selected. The test
set was used to estimate model performance in real world
applications.

In the learning-to-rank model, the ASD proteins were
randomly split into a training set (80%) and a test set (20%).
Five-fold cross validation was performed on the training
set for parameter tuning, and the best-performed param-
eter setting was selected and used on the test set. Due to the
limited protein sample size, the n-fold cross validation was
considered more effective than the previous 60/20/20 split-
ting to include more training data and can lead to better
performance.

Data imbalance is a key issue in our model training,
which the amount of data in one class is significantly smaller
than other classes. In allosteric site prediction, each pro-
tein may consist of more than ten pockets while there is
only one positive (allosteric) pocket. Data imbalance may
cause poor performance, as a model cannot learn enough
from the minority class (31). To address this issue, an un-
dersampling strategy is applied to train the GCNN model
by randomly removing negative pockets to keep a constant
ratio of four between the number of positive and nega-
tive pockets. The top six pockets with the highest FPocket
scores in each protein were selected to train the automated
machine learning model. However, discarding pocket sam-
ples may lead to a loss of useful information for training
a robust model. Oversampling is another strategy to rebal-
ance datasets by duplicating old or generating new exam-
ples. One drawback is that the generated new pockets may
not correspond to real protein pockets, thus, lack biologi-
cal meaning. Moreover, it is more likely to introduce over-
fitting (32). Increasing the weight of the minority class is
a third way. The weight of positive labels can be increased
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Table 1. Reported performance of machine learning models on PASSer

Models Precision Recall Fl score Top 1 Top 3
Ensemble learning  0.726 0.847 0.782 60.7% 84.9%
Automated machine 0.850 0.616 0.701 65.1%  82.7%
learning

Learning-to-rank 0.662 0.662 0.662 59.5% 83.6%

through the scale_pos_weight parameter in XGBoost and
learning-to-rank models so that all data can be included in
training.

Model performance

Table 1 summarizes the performance of three machine
learning models. To compare the model performance, vari-
ous metrics were calculated, including precision, recall, and
F1 score for binary classification, and the percentage of ac-
tual allosteric sites ranked in top 1 and 3 positions.

In the learning-to-rank model, each pocket is predicted
with a rank score, which reflects the relevance, i.e. how well
a pocket meets the characteristics of known allosteric sites
in the training set. The pockets with high rank scores sug-
gest higher possibility of being allosteric sites and are worth
further study. In our analysis, only the pocket with the high-
est rank score was labeled as positive in each protein, and
then the metrics for binary classification can be calculated.
Since we fixed the number of predicted positive labels, the
false positive and false negative predictions are the same,
which results the same precision and recall values. It is im-
portant to note that performance is not directly compara-
ble across models due to differences in the training and test
datasets used. Going forward, the use of standardized data
preparation procedures and scripts presented in this study
and the web server will enable more equitable comparison
of machine learning models.

Model selection guidance

Different models require different execution time and have
various output types. Table 2 summarizes the execution
speed and prediction type of three machine learning mod-
els. The execution time needed in each model was exten-
sively estimated with multiple mid-sized proteins (100-300
residues). For one prediction, the ensemble learning model
requires 1-2 s on average and the learning-to-rank model
is slightly faster. The automated machine learning model
takes around 20 seconds due to the loading of 14 base mod-
els. For prediction types, probabilities are generated in both
of the ensemble learning and automated machine learn-
ing models, and rank scores are reported in the learning-
to-rank model. We recommend the users choosing ensem-
ble learning and learning-to-rank models for time sensitive
tasks, ensemble learning and automated learning models
for good interpretability, and learning-to-rank model for
benchmark study and performance comparison.

Case study
We demonstrated the functionality of PASSer with a

€202 1SNBNy 9| U0 JasN AYISIBAIUN ISIPOYISN WIBUINOS AQ 169Gt | 2//Z7M/ LA/ LS/I0IME/1eU /W0 dNo"olwapeo.//:sdjy WOy papeojumod



W430 Nucleic Acids Research, 2023, Vol. 51, Web Server issue

A

Run prediction

PDBID  Upload a PDB file

Please input a protein identifier:

5DKK

Please input a chain ID:

A

Choose a model: 12

Submit

Results of PDB ID: 5DKK

The table below reports the predicted allostery probabilities/scores of the top 3 pockets.

Pocket Number Probability Residues
1 89.65%
2 20.24%

3 16.84%

Show Residues
Show Residues

Show Residues

Click here to download the complete report if you want to (1) check the full list of prediction results on all pocket;

owhite gray Ltblue black Spin

Hide pocket 1 Reset

see pocket residues in PDB format; or (3) visualize/ produce protein structure using your own software.

Figure 1. One example of allosteric site prediction results of the light-oxygen-voltage domain of Phaeodactylum tricornutum Aureochrome la protein.
(A) The job submission form with protein identifier SDKK, chain ID A, and ensemble learning model. (B) Predicted probabilities of the top three most
probable pockets being allosteric sites. (C) An interactive window showing SDKXK protein structure with highlighted pockets.

Table 2. Selection criteria of machine learning models on PASSer

Execution
Models time Type
Ensemble learning Fast (1-25) Probability
Automated machine Slow (~20 s) Probability
learning
Learning-to-rank Fast (1-2s) Rank score

known allosteric protein, the light-oxygen-voltage domain
of Phaeodactylum tricornutum Aureochrome la (PDB ID
SDKK) (33). On the main page (Figure 1A), we submitted a
prediction job by inputting the protein identifier SDKK and
chain ID A, and choosing the ensemble prediction model.
On the result page, a table (Figure 1B) displays the predic-
tion probabilities of the top three most probable pockets as
allosteric sites. Users can click on ‘Show Residues’ to view
the corresponding pocket residues. Higher probability indi-
cates higher likelihood of the pocket being an allosteric site.
Figure 1C displays the interactive window showing SDKK
protein structure. The red pocket had a predicted probabil-
ity of 89.65%, indicating its high potential to be an allosteric
site. This result aligns well with the finding of the actual al-
losteric pocket based on previous research (34). Users can
download the results from the provided link and interact
with the protein structure and predicted pockets through
this window, which supports the functions to change back-
ground colors and show or hide specific pockets.

PASSer web service has also been applied for other pur-
poses, such as the revalidation of allosteric site predic-
tion for other models and the screening of predicted al-
losteric sites. For example, PASSer was combined with Al-
losite Pro to validate the identified allosteric site of SARS-

CoV-2 methyltransferase (MTase) (35). In another study,
PASSer was employed with the Computed Atlas of Sur-
face Topography of Proteins (CASTp) server to discover the
apolipoprotein L1 (APOL1) protein (36).

CONCLUSION

PASSer is a user-friendly web application that facilitates
the prediction of protein allosteric sites. It provides three
pre-trained machine learning models to achieve reliable and
accurate performance, along with interactive result visual-
ization. The website is hosted on a high-performance com-
puting platform, enabling it to complete predictions within
seconds. PASSer has been widely used for the validation
of known functional pockets and the discovery of new al-
losteric sites.

DATA AVAILABILITY

The PASSer web service is freely available at https:
/lpasser.smu.edu. The Python scripts to prepare train-
ing data is available at https://github.com/smu-tao-group/
PASSerRank and https://doi.org/10.5281/zenodo.7818017.
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