Urban Welfare: Tourism in Barcelona

Treb Allen¹ Simon Fuchs³ Sharat Ganapati⁴ Alberto Graziano² Rocio Madera⁵ Judit Montoriol-Garriga²

¹Dartmouth College

²CaixaBank Research

³FRB Atlanta

⁴Georgetown University

⁵Southern Methodist University

LSE May 14, 2021

New Wave of Urban Research

- A. New generation of urban spatial equilibrium models (Ahlfeldt et al., 2015; Allen & Arkolakis, 2016)
 - Structural counterfactuals at a high resolution
 - ... but restrictive parametric assumptions and/or structural estimation
- B. New generation of **urban data**
 - Urban economic activity can be observed in unprecedented detail
 - Mobility, expenditure, income networks (cellphone, banks, apps)
 but hard to implement tractable and informative empirical analysis
- Welfare effects of an urban shock...

New Wave of Urban Research

- A. New generation of urban spatial equilibrium models (Ahlfeldt et al., 2015; Allen & Arkolakis, 2016)
 - Structural counterfactuals at a high resolution
 - ... but restrictive parametric assumptions and/or structural estimation
- B. New generation of **urban data**
 - Urban economic activity can be observed in unprecedented detail
 - Mobility, expenditure, income networks (cellphone, banks, apps)
 - ... but hard to implement tractable and informative empirical analysis
- Welfare effects of an urban shock...

... in a tractable way without parametric assumptions or structural estimation?

This Paper: A method to estimate welfare effects of urban shocks

- 1. Both simple and general:
 - Simple: Regression based framework
 - General: No parametric assumptions necessary
- 2. Based on two insights:
 - Envelope results from residents' optimal (spatial) cons & commuting patterns
 - ⇒ Intuitive analytical expression for intra-city welfare
 - Perturbation of market clearing identifies heterogeneous effects & GE spillovers

This Paper: A method to estimate welfare effects of urban shocks

- 1. Both simple and general:
 - Simple: Regression based framework
 - General: No parametric assumptions necessary
- 2. Based on two insights:
 - Envelope results from residents' optimal (spatial) cons & commuting patterns
 - \Rightarrow Intuitive analytical expression for intra-city welfare
 - Perturbation of market clearing identifies heterogeneous effects & GE spillovers
- 3. Apply methodology to estimate welfare effect of tourism in Barcelona:
 - Rich new data on expenditure and income spatial patterns
 - Causal (shift-share) identification from variation in vacation timing in RoW

Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP

Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP
- Growing, especially in cities
 - BCN: 25% secular ↑ in past 5 yrs
 - BCN: 200% seasonal ↑ within year

Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP
- Growing, especially in cities
 - BCN: 25% secular ↑ in past 5 yrs
 - BCN: 200% seasonal ↑ within year
- Unequal welfare gains

Key Findings

- 1. Methodological
 - Simple reduced form approach has problems (Aggr. bias + SUTVA violation)
 - Incorporating theory-predicted heterogeneity and spillovers identifies het effects
 - Predictions close to those from full structural model
- 2. Impact of tourism
 - Median resident not substantially affected by (seasonal changes in) tourism...
 - ...but there is substantial heterogeneity with winners and losers

Literature

Urban Quantitative Spatial Economics

• Ahlfeldt *et al.* (2015), Monte *et al.* (2018), Allen & Arkolakis (2016), Heblich *et al.* (2020)

Big Data Spatial Economics

• Athey *et al.* (2020), Couture (2016), Couture *et al.* (2020), Davis *et al.* (2019), Agarwal *et al.* (2017), Miyauchi *et al.* (2021), Kreindler & Miyauchi (2021)

Impact of Tourism

• Almagro & Domínguez-Iino (2019), García-López *et al.* (2019), Faber & Gaubert (2019)

First-Order Impact of Price Shocks

• Deaton (1989), Kim & Vogel (2020), Atkin et al. (2018), Baqaee & Burstein (2021)

Small shocks in general equilibrium

• Allen et al. (2020), Baqaee & Farhi (2019), Kleinman et al. (2020), Porto (2006)

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion

An Envelope Result for the Welfare effects of Small Shocks

- Arbitrary discrete urban geography: **N** blocks, each with resident(s) and firm(s).
- Resident of block n = 1, ..., N chooses goods i = 1, ..., N to (spatially) consume.

$$u_n = \frac{v_n}{G\left(\boldsymbol{p}_n\right)}$$

- homothetic preferences
- v_n is disposable income of representative agent in block n
- $G(\cdot)$ is a price aggregator
- \boldsymbol{p}_n refers to the set of transport-cost and amenity adjusted prices

An Envelope Result for the Welfare effects of Small Shocks

• Supplies labor (spatially) to maximize income.

$$v_n = \max_{\{\ell_i\}} \sum_{i=1}^N w_i \ell_i$$
 s.t. $H_n(\ell_n) = T_n$

- T_n is the time endowment in location n scaled by population size
- $H_n(\cdot)$ is a convex function that reflects congestion costs in commuting
- ℓ_n is the vector of commuting cost adjusted labor supply

Roys Identity for Labor Supply

Intuitive analytical expression for intra-city welfare analysis

Theorem (Welfare Effect of a (small) Shock)

Consider a representative local residing in block **n**. Applying envelope theorem to consumption, production optimization problems yields:

$$d \ln u_n = \underbrace{\sum_{i} c_{ni} \times \partial \ln w_i}_{\Delta Spatial \ Income} - \underbrace{\sum_{i} s_{ni} \times \partial \ln p_i}_{\Delta Spatial \ Price \ Index}.$$

- Evaluating the welfare effects of an urban shock requires:
 - Income share data $\{c_{ni}\}_{n=1,i=1}^{N,N}$
 - Spatial expenditure data $\{s_{ni}\}_{n=1,i=1}^{N,N}$
 - Estimates of key elasticities: $\{\partial \ln p_i, \partial \ln w_i\}_{i=1}^N$

Consider an external **expenditure shock** E^{T} to a city

• Goods market clearing in location i:

$$y_i = \sum_{n=1}^N s_{ni} v_n + s_i^T E^T$$

• Labor market clearing in location *i*:

$$\frac{\mathbf{w}_{i}\ell_{i}}{\theta_{i}^{\ell}} = \sum_{n=1}^{N} \mathbf{s}_{ni}\mathbf{v}_{n} + \mathbf{s}_{i}^{\mathsf{T}}\mathbf{E}^{\mathsf{T}}$$

• where θ_i^{ℓ} is the output elasticity to labor

Consider an external **expenditure shock** E^{T} to a city

location j

location n

Consider an external **expenditure shock** E^{T} to a city \rightarrow **Income Shock**

Consider an external **expenditure shock** E^{T} to a city \rightarrow **Income Shock** \rightarrow **Demand**

Consider an external expenditure shock E^{T} to a city \rightarrow Income Shock \rightarrow Demand \rightarrow Income Shock

Consider an external **expenditure shock** E^T to a city \rightarrow **Income Shock** \rightarrow **Demand** \rightarrow **Income Shock** \rightarrow **Demand**

• Direct Effect:

- Expenditure shock increases prices/wages \propto to its expenditure share in that location

• Indirect Effect:

Increases prices/wages by increasing residential income elsewhere (spatial multiplier)

Elasticities: Theory Insights

Theorem ('Short Run' Elasticities for Prices and Wages)

Consider an external expenditure shock E^{T} to a city. Imposing market clearing, keeping expenditure shares and labor allocation constant, we obtain,

- A General Methodology for (small) Urban Shocks
 - Intuitive analytical formula to trace out welfare effects
 - Predictions for heterogeneous and GE effects

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion

- Working closely with Caixabank, a large Spanish bank based in Barcelona
- First paper to combine:
 - 1. High resolution bilateral expenditure data.
 - 2. High resolution residential income data.
 - 3. High resolution commuting data.

- Expenditure Data:
- Income Data:
- Commuting data:

- Expenditure Data:
 - Source: Account & point-of-sale data covering 165M+ transactions pa
 - Locals: 1095 residential tiles x 1095 cons tiles x 20 sectors x 36 months
 - Tourists: country of origin x 1095 cons tiles x 20 sectors x 36 months
 - January 2017 December 2019
 - Covers roughly 54.4 pc of total expenditure Comparison: HBS
- Income Data:
- Commuting data:

- Expenditure Data:
- Income Data:
 - Source: Payrolls and UB from over 400k accounts
 - Mean and median income per census tract Comparison: INE Map: Income in Barcelona
- Commuting data:

- Expenditure Data:
- Income Data:
- Commuting data: Two sources:
 - 1. Imputed from expenditures on weekday lunches (Caixa)
 - 2. Commuting patterns from cell phone locations (INE)

- Expenditure Data:
- Income Data:
- Commuting data:
- Housing prices:
 - Source: Idealista ("Spanish Zillow")
 - House prices and rental rates
 - Monthly frequency for neighborhoods (more aggregated than census blocks)

- 1. Tourism varies across space and time within the city
- 2. Locals' spending and income are spatially determined by residence
- 3. Tourist spending affects local's spending and incomes

Three Stylized Facts

- 1. Tourist spending varies across space and time within the city
 - Provides variation for identification
- 2. Locals' spending and income are spatially determined by residence
 - Documents the heterogeneous incidence across space
- 3. Tourist spending affects local's spending and incomes
 - Prima-facie evidence of the effect of tourism

1. Tourism varies across space and time within the city

- 2. Locals' spending and income are spatially determined by residence
- 3. Tourist spending affects local's spending and incomes

Fact 1: Tourism varies across space and time within the city

Local Expenditures in Barcelona

Average Yearly Expenditure per sqm in EUR

0E/m2 - 1E/m2 2E/m2 - 5E/m2 8E/m2 - 13E/m2 20E/m2 - 30E/m2 45E/m2 - 73E/m2

 $1E/m2 - 2E/m2 \ 5E/m2 - 8E/m2 \ 13E/m2 - 20E/m2 \ 30E/m2 - 45E/m2 \ 73E/m2 - 733E/m2$

Tourist Expenditures in Barcelona

0 E/m2 - 0.7 E/m2 1.6 E/m2 - 2.6 E/m2 3.8 E/m2 - 6 E/m2 9.4 E/m2 - 17.4 E/m2 32.3 E/m2 - 70.3 E/m2

0.7 E/m2 - 1.6 E/m2 2.6 E/m2 - 3.8 E/m2 6 E/m2 - 9.4 E/m2 17.4 E/m2 - 32.3 E/m2 70.3 E/m2 - 2188.6 E/m2

Fact 1: Tourism varies across space and time within the city

Local Expenditures in Barcelona

Average Yearly Expenditure per sqm in EUR

0E/m2 - 1E/m2 2E/m2 - 5E/m2 8E/m2 - 13E/m2 20E/m2 - 30E/m2 45E/m2 - 73E/m2

 $1E/m2 - 2E/m2 \ 5E/m2 - 8E/m2 \ 13E/m2 - 20E/m2 \ 30E/m2 - 45E/m2 \ 73E/m2 - 733E/m2$

Tourist Expenditures in Barcelona

0 E/m2 = 0.7 E/m2 = 1.6 E/m2 = 2.6 E/m2 = 3.8 E/m2 = 6 E/m2 = 9.4 E/m2 = 17.4 E/m2 = 32.3 E/m2 = 70.3 E/m2

0.7 E/m2 - 1.6 E/m2 2.6 E/m2 - 3.8 E/m2 6 E/m2 - 9.4 E/m2 17.4 E/m2 - 32.3 E/m2 70.3 E/m2 - 2188.6 E/m2

Fact 1: Tourism varies across space and time within the city

23 / 59
- 1. Tourism varies across space and time within the city
- 2. Locals' spending and income are spatially determined by residence
- 3. Tourist spending affects local's spending and incomes

Fact 2: Local Spending & Income is Spatial

 $0Pc - 0.05Pc \quad 0.05Pc - 0.1Pc \quad 0.1Pc - 0.5Pc \quad 0.5Pc - 1Pc \quad 1Pc - 2Pc \quad 2Pc - 3Pc$

0.05Pc-0.1Pc 0.1Pc -0.5Pc 0.5Pc-1Pc 1Pc-2Pc 2Pc-3Pc 3Pc-4Pc 4Pc-5Pc NA

- 1. Tourism varies across space and time within the city
- 2. Locals' spending and income are spatially determined by residence
- 3. Tourist spending affects local's spending and incomes

Fact 3: Tourist spending affects local's spending

 Δ Local vs Δ Tourist Expenditure (Aug vs Jan)

Fact 3: Tourist spending affects local's incomes

 Δ Income vs Δ Commuting Impl Exposure (Aug vs Jan)

Three Stylized Facts

- 1. Tourist spending varies across space and time within the city
 - Provides variation for identification
- 2. Locals' spending and income are spatially determined by residence
 - Documents the heterogeneous incidence across space
- 3. Tourist spending affects local's spending and incomes
 - Prima-facie evidence of the effect of tourism

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion

Empirics

- From Theory to Estimation
- Identification
- Results

From Theory to Estimation

• Welfare Formula

• Estimates of key elasticities: $\left\{\frac{\partial \ln p_i}{\partial \ln E_i^T}, \frac{\partial \ln w_i}{\partial \ln E_i^T}\right\}_{i=1}^N$

From Theory to Estimation

• Welfare Formula

$$d \ln u_n = \underbrace{\sum_{i} c_{ni} \times \partial \ln w_i}_{\Delta \text{Spatial Income}} - \underbrace{\sum_{i} s_{ni} \times \partial \ln p_i}_{\Delta \text{Spatial Price Index}}.$$

• Estimates of key elasticities:
$$\left\{\frac{\partial \ln p_i}{\partial \ln E_i^T}, \frac{\partial \ln w_i}{\partial \ln E_i^T}\right\}_{i=1}^N$$

• Challenges

- *p*_{it} includes non-pecuniary effects
- our data: income vnt, not wages wit
- In *E_{it}* not exogenous (everyone likes the beach)

- Recovering amenity-adjusted prices
 - From CES preferences
 - δ_{it} is the destination fixed effect of a gravity regression:

 $\ln X_{nit} = \ln \delta_{nt} + \ln \delta_{it} + \beta^{dist} \ln travel_time_{nit} + \varepsilon_{nit}$

- PPML estimated
- Including both prices and non-pecuniary effects of tourism

- Recovering amenity-adjusted prices
 - From CES preferences
 - δ_{it} is the destination fixed effect of a gravity regression:

 $\ln X_{nit} = \ln \delta_{nt} + \ln \delta_{it} + \beta^{dist} \ln travel_time_{nit} + \varepsilon_{nit}$

- PPML estimated
- Including both prices and non-pecuniary effects of tourism
- Price Regressions (Average Treatment Effect)

$$\ln \delta_{it} = \alpha + \beta^{\mathbf{p}} \times \ln \mathbf{E}_{it}^{\mathbf{T}} + \epsilon_{it}$$

- Tourist shock at residential level:
 - Commuting implied exposure measures impact of tourism on income

$$\ln \operatorname{CiE}_{ntm}^{T} = \sum_{i} \mathbf{c}_{ni} \times \ln \mathbf{E}_{itm}^{T}$$

• Derived from income maximization problem Derivations

- Tourist shock at residential level:
 - Commuting implied exposure measures impact of tourism on income

$$\ln \operatorname{CiE}_{ntm}^{T} = \sum_{i} \boldsymbol{c}_{ni} \times \ln \boldsymbol{E}_{itm}^{T}$$

- Derived from income maximization problem Derivations
- Income Regressions (Average Treatment Effect)

$$\ln \mathbf{v}_{nt} = \alpha + \beta^{\mathsf{w}} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} + \epsilon_{it}$$

• Income & Price Regressions (Average Treatment Effect)

 $\ln \mathbf{v}_{nt} = \alpha + \beta^{\mathsf{w}} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} + \epsilon_{it}$ $\ln \delta_{it} = \alpha + \beta^{\mathsf{p}} \times \ln \mathbf{E}_{it}^{\mathsf{T}} + \epsilon_{it}$

• Income & Price Regressions (Average Treatment Effect)

 $\ln \mathbf{v}_{nt} = \alpha + \beta^{\mathsf{w}} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} + \epsilon_{it}$ $\ln \delta_{it} = \alpha + \beta^{\mathsf{p}} \times \ln E_{it}^{\mathsf{T}} + \epsilon_{it}$

• Challenge

• Does not take heterog. into account when calculating welfare (Aggregation bias)

• Income & Price Regressions (Heterogeneous Treatment Effect)

$$\ln \mathbf{v}_{nt} = \alpha + \beta^{\mathbf{w}} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} + \beta^{\mathbf{w},het} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} \left(\eta_{itm}^{\mathsf{0}} \right) + \epsilon_{it}$$
$$\ln \delta_{it} = \alpha + \beta^{p} \times \ln E_{it}^{\mathsf{T}} + \beta^{p,het} \times \eta_{itm}^{\mathsf{0}} \times \ln E_{it}^{\mathsf{T}} + \epsilon_{it}$$

• Variables

•
$$\eta_{itm}^0 = E_i^T / y_i$$
 is the direct effect

• Income & Price Regressions (Heterogeneous Treatment Effect)

$$\ln v_{nt} = \alpha + \beta^{w} \times \ln \operatorname{CiE}_{ntm}^{T} + \beta^{w,het} \times \ln \operatorname{CiE}_{ntm}^{T} \left(\eta_{itm}^{0}\right) + \epsilon_{it}$$
$$\ln \delta_{it} = \alpha + \beta^{p} \times \ln E_{it}^{T} + \beta^{p,het} \times \eta_{itm}^{0} \times \ln E_{it}^{T} + \epsilon_{it}$$

• Challenge

• Abstracts from GE spillover effects (SUTVA violation)

• Income & Price Regressions (HTE and Controlling for GE Spillovers)

$$\ln \mathbf{v}_{nt} = \alpha + \beta^{\mathbf{w}} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} + \beta^{\mathbf{w},het} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} \left(\eta_{itm}^{\mathsf{0}}\right) + \epsilon_{it}$$
$$\ln \delta_{it} = \alpha + \beta^{p} \times \ln E_{it}^{\mathsf{T}} + \beta^{p,het} \times \eta_{itm}^{\mathsf{0}} \times \ln E_{it}^{\mathsf{T}} + \beta^{p,GE} \times \eta_{itm}^{\mathsf{0},Res} \times \log E_{itm}^{\mathsf{T},GE} + \epsilon_{it}$$

• Variables

• In $E_{ntm}^{T,GE}(\eta_{itm}^0) = \sum_n s_{ni} \times \ln \widehat{\text{Ci}E_{ntm}^T}(\eta_{itm}^0)$ captures (first-degree) GE spillovers

Identification: Shift-Share IV from Het Tourist Pref

- Challenge: Unobserved changes in attractiveness/productivity of a location
 - Induces comovement between residential expenditure and tourist expenditure
 - ...or residential income and tourist expenditure
 - ...or measurement error in independent variable (income proxy)

Identification: Shift-Share IV from Het Tourist Pref

- Our Strategy: Shift-share IV from Heterogeneous Tourist Preferences
 - Total tourist expenditure is given by:

$$B_{it}^{T} = \sum_{g \in T} s_{git}^{0} imes E_{gt}^{T}$$

- Shares s_{ait}^0 capture spatial preferences for group g in **baseline**
- Shifts from changes in group-specific expenditures (E_{at}^{T})
 - Leave-own-location-out
- Can be derived from non-parametric tourist demand Derivations
- With FE identification comes from unanticipated changes in Tourist expenditures

First Stage

Estimation Results

Income Regressions: Average and Heterogeneous Effects

• Recover average treatment effects

$$\ln \mathbf{v}_{nmt} = \gamma_i + \gamma_m + \gamma_t + \beta^{\mathsf{w}} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} + \epsilon_{imt},$$

• Recover heterogeneous treatment effects

$$\ln v_{nmt} = \gamma_i + \gamma_m + \gamma_t + \beta^{\mathsf{w}} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} + \beta^{\mathsf{w},\mathsf{het}} \times \ln \operatorname{CiE}_{ntm}^{\mathsf{T}} \left(\eta_{itm}^{\mathsf{0}} \right) + \epsilon_{imt},$$

• Variables

• In *v_{nmt}* is income at residential tile and is regressed on:

$$\ln \operatorname{CiE}_{ntm}^{T} = \sum_{i} \mathbf{c}_{ni} \times \ln \mathbf{E}_{itm}^{T}$$

Income Regressions: Average and Heterogeneous Effects

Dependent Variable:	In Income (Mean)							
	Cell	Lunch	Cel	Phone	Lunc	htime		
Model:	0 (1)	LS (2)	IV - 2017 (3)	Low Season (4)	IV - 2017 L (5)	ow Season. (6)		
<i>Variables</i> In CiE _{nt}	0.012	0.006	0.035	0.008	0.040**	-0.009		
$\eta_{\textit{it}}^{0} \times \ln \widehat{\text{CiE}}_{\textit{nt}}(\eta_{\textit{it}}^{0})$	(0.012)	(0.004)	(0.025)	(0.037) 0.046 (0.033)	(0.018)	(0.025) 0.092*** (0.027)		
Fixed-effects								
Location	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Month Year	\checkmark	\checkmark	\checkmark	√ √	\checkmark	\checkmark		
Fit statistics Observations Adjusted R^2 E-test = t^2 (1st Stage)	1,776 0.93	26,472 0.888	1,776 0.93 142 8	1,776 0.93 142 8	26,472 0.888 927 0	26,472 0.888 927 0		

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Price Regressions: Step 1

• Recover average treatment effects

$$\ln \delta_{ismt} = \gamma_{tms} + \gamma_{is} + \gamma_{ist} + \gamma_{ism} + \beta^{p} \times \log E_{itm}^{T} + \epsilon_{ismt},$$

- Variables
 - δ_{ismt} is destination FE from PPML specification on travel time

Binscatter Plot Gravity Results

Price Regressions: Step 1

Dependent Variable:	Residents Expenditure (Gravity): δ^R_{ist}								
	OLS			IV - Ref: 2017 Average			IV - Ref: 2017 Low Season		
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Variables Tourists Expenditure: In E _{it} ^T	0.159*** (0.011)	0.152*** (0.014)	0.091*** (0.010)	-0.437*** (0.096)	-0.477*** (0.108)	-0.576*** (0.189)	-0.469*** (0.100)	-0.512*** (0.111)	-0.668*** (0.223)
Fixed-effects Month-Year × Sector (480) Location × Sector (21,920) Location × Sector × Vear (43,840) Location × Sector × Month (263,040)	√ √	\checkmark	\checkmark	√ √	\checkmark	\$ \$ \$	\$ \$	\$ \$ \$	\sim \sim \sim
Fit statistics Observations Adjusted R ² F -test = t ² (1st Stage)	526,080 0.992	526,080 0.993	526,080 0.994	526,080 0.99 145.4	526,080 0.991 138.2	526,080 0.993 38.4	526,080 0.99 153.3	526,080 0.991 148.7	526,080 0.992 30.7

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Binscatter Plots

Price Regressions: Step 2 and 3

Recover heterogeneous treatment effects

 $\ln \delta_{ismt} = \gamma_{tms} + \gamma_{is} + \gamma_{ist} + \gamma_{ism} + \beta^{p,het} \times \eta^{0}_{itm} \times \log E^{T}_{itm} + \beta^{p,GE} \times \eta^{0,Res}_{itm} \times \log E^{T,GE}_{itm} + \epsilon_{ismt}$

- Variables
 - $\eta_{itm}^{0,Res} = E_i^R / y_i$ is the importance of residential expenditures in a tile
 - (first-order) GE spillover effect is approximated by:

$$\ln \mathsf{E}_{\mathit{ntm}}^{\mathit{T,GE}}\left(\eta_{\mathit{itm}}^{\mathsf{0}}\right) = \sum_{\mathit{n}} \boldsymbol{s}_{\mathit{ni}} \times \ln \widehat{\mathsf{CiE}_{\mathit{ntm}}^{\mathit{T}}}\left(\eta_{\mathit{itm}}^{\mathsf{0}}\right)$$

Price Regressions: Step 2 and 3

Dependent Variable:	δ^R_{ist}							
	IV - Ref: 2017 Average IV - Re			f: 2017 Low Season				
Model:	(1)	(2)	(3)	(4)	(5)	(6)		
Variables								
$\widehat{\ln E_{it}^T}$	0.019 (0.059)	-0.029 (0.059)	-0.059 (0.060)	0.011 (0.064)	-0.037 (0.064)	-0.062 (0.065)		
$\widehat{\ln \boldsymbol{E}_{it}^T} imes \eta_{it}^0$	-0.523*** (0.087)	-0.467*** (0.087)	-0.357*** (0.096)	-0.628*** (0.091)	-0.555*** (0.091)	-0.448*** (0.102)		
$\widehat{\ln E^{GE}_{it}}(\vec{\eta}^0_i)$		-0.004***	-0.009***		-0.005***	-0.009*** (0.002)		
$\widehat{\ln E^{GE}_{it}}(ar{\eta}^0_i) imes ar{\eta}^{0,Res}_i$			0.007*** (0.003)			0.006** (0.003)		
Fixed-effects								
Month-Year×Sector (480)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Location×Sector (21,840)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Location×Sector×Year (43,680)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Location×Sector×Month (262,080)	\checkmark	~	~	\checkmark	~	~		
Fit statistics								
Observations Adjusted R ²	524,160 0.975	524,160 0.975	524,160 0.975	524,160 0.975	524,160 0.975	524,160 0.975		

Normal standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion

Is tourism good for the locals (on average)?

• Can aggregate to welfare using a simplified version of welfare results

$$\frac{d\ln\bar{u}}{\partial\ln E^{T}} = \frac{\partial\ln\bar{v}}{\partial\ln E_{i}^{T}} - \frac{\partial\ln\bar{p}}{\partial\ln E_{i}^{T}}$$

- Average Welfare effects (Low/High Season)
 - Implies net welfare deterioration of 5pc
- Caveats
 - Aggregation Bias
 - SUTVA violation

Is tourism good for the locals?

• Welfare Formula

$$d \ln u_n = \frac{\partial \ln v_n}{\partial \ln E_i^T} \times d \ln E_i^T - \sum_i s_{ni} \times \frac{\partial \ln p_i}{\partial \ln E_i^T} \times d \ln E_i^T$$

- *s*_{ni} use baseline averages in 2017
- cni only one cross-section available
- Predict income and price changes from January to August

Income (Panel A) and Price Effects (Panel B)

Change in Income

0.29-0.8 0.92-0.98 1.04-1.1 1.17-1.23 1.29-1.36 1.44-1.55 1.65-1.78 2.01-3.69

0.8-0.92 0.98-1.04 1.1-1.17 1.23-1.29 1.36-1.44 1.55-1.65 1.78-2.01

Welfare Effects

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion

Comparison to Quantitative Model

• Demand

$$G(\boldsymbol{p}_n) = \left(\sum_{s=0}^{S} \alpha_s \left(\left(\sum_{i=1}^{N} \tilde{p}_{nis}^{1-\sigma_s}\right)^{\frac{1}{1-\sigma_s}} \right)^{1-\eta} \right)^{\frac{1}{1-\eta}}$$

• Wage Aggregator ($\epsilon < 0$)

$$J(\boldsymbol{w}_n) = \left(\sum_i (w_{ni})^{1-\epsilon}\right)^{\frac{1}{1-\epsilon}}$$

Production with Specific Factors

$$Q_{is} = F_{is} \left(\ell_{is}, m_{is}
ight) = z_{is} \ell_{is}^{\beta_s} m_{is}^{1-\beta_s}$$

Equilibrium

• Market Clearing Condition

$$y_{is} = \sum_{n=1}^{N} \mathbf{s}_{nis} \mathbf{v}_n + \sum_{g=1}^{G} \mathbf{s}_{gis} E_g^T$$

• Labor Market Clearing

$$w_i \ell_i = \sum_{s=0}^{S} \theta_s^{\ell} \sum_{n=1}^{N} s_{nis} v_n + \sum_{s=0}^{S} \theta_s^{\ell} \sum_{g=1}^{G} s_{gis} E_g^T$$

• Disposable Income

$$\mathbf{v}_n = \left(\sum_i \left(\mathbf{w}_{ni}\right)^{1-\epsilon}\right)^{\frac{1}{1-\epsilon}} \times T_n$$
Price and Income Predictions highly correlated with DEK Results

Price Regressions Redux

Dependent Variable:	δ_{ist}^{R}						
Model:	(1)	(2)	(3)	(4)			
Variables							
$\widehat{\ln E_{it}^T}$	0.011 (0.064)	2.63 (4.61)	-0.062 (0.065)	4.49 (4.61)			
$\widehat{\ln E_{lt}^T} imes \eta_{lt}^0$	-0.628*** (0.091)	-0.541*** (0.179)	-0.448*** (0.102)	-0.294 (0.186)			
$\widehat{\ln E_{lt}^T} \times \widehat{p}_l^{DEK}$		-2.58 (4.54)		-4.49 (4.55)			
$\widehat{\ln E_{ll}^{GE}}(ar{\eta}_{l}^{0})$			-0.009*** (0.002)	- <mark>0</mark> .009*** (0.002)			
$\widehat{\ln {m{ extsf{E}}_{lt}^{ extsf{GE}}}}(ar{\eta}_i^0) imes ar{\eta}_i^{0, Res}$			0.006** (0.003)	0.006** (0.003)			
Fixed-effects							
Month-Year×Sector (480)	\checkmark	\checkmark	\checkmark	\checkmark			
Location×Sector (21,840)	 ✓ 	√	√	√			
Location×Sector×Year (43,680) Location×Sector×Month (262,080)	\checkmark	\checkmark	\checkmark	\checkmark			
Fit statistics Observations Adjusted B ²	524,160	524,160	524,160	524,160			

Normal standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion

Conclusion: Estimating the welfare impacts of an urban shock

- Option A: Quantitative model
 - (+) Incorporates full GE structure of the city
 - (-) Relies on strong parameterizations
- Option B: Average treatment effects
 - (+) Robust to model mis-specification
 - (-) Ignores heterogeneity, GE spillovers (SUTVA likely violated).
- Option C: A hybrid approach.
 - (+) Incorporates heterogeneity, (short-run) GE spillovers
 - (+) With a minimal set of model assumptions.

Bibliography

Agarwal, Sumit, Jensen, J. Bradford, & Monte, Ferdinando. 2017 (July). *Consumer Mobility and the Local Structure of Consumption Industries*. NBER Working Papers 23616. National Bureau of Economic Research, Inc.

Ahlfeldt, Gabriel M., Redding, Stephen J., Sturm, Daniel M., & Wolf, Nikolaus. 2015. The Economics of Density: Evidence From the Berlin Wall. *Econometrica*, **83**(6), 2127–2189.
Allen, Treb, & Arkolakis, Costas. 2016. *Optimal City Structure*. 2016 Meeting Papers 301.
Allen, Treb, Arkolakis, Costas, & Takahashi, Yuta. 2020. Universal Gravity. *Journal of Political Economy*, **128**(2), 393–433.

Almagro, Milena, & Domínguez-lino, Tomás. 2019. Location Sorting and Endogenous Amenities: Evidence from Amsterdam.

Athey, Susan, Ferguson, Billy, Gentzkow, Matthew, & Schmidt, Tobias. 2020. Experienced Segregation.

Atkin, David, Faber, Benjamin, & Gonzalez-Navarro, Marco. 2018. Retail Globalization and Household Welfare: Evidence from Mexico. *Journal of Political Economy*, **126**(1), 1–73.
Baqaee, David, & Burstein, Ariel. 2021 (May). *Welfare and Output with Income Effects and Demand Instability*. Working Paper 28754. National Bureau of Economic Research.
Baqaee, David Rezza, & Farhi, Emmanuel. 2019. The Macroeconomic Impact of Microeconomic Shocks: Beyond Hulten's Theorem. *Econometrica*, **87**(4), 1155–1203.

Couture, Victor. 2016. Valuing the Consumption Benefits of Urban Density.

Commuting Implied Exposure Derivation

• Disposable income is given by

$$\mathbf{v}_n = \sum_{i=1}^N \mathbf{w}_i \ell_{ni}$$

• Totally differentiating and applying the envelope result from above, we obtain,

$$\mathrm{d}\ln v_n = \sum_{i=1}^N c_{ni} \mathrm{d}\ln w_i$$

• Impact of tourist expenditure shock,

$$\mathrm{d} \ln \mathbf{v}_n = \sum_{i=1}^N \mathbf{c}_{ni} \frac{\mathrm{d} \ln \mathbf{w}_i}{\mathrm{d} \ln \mathbf{E}^T} \mathrm{d} \ln \mathbf{E}^T \qquad \ln \mathrm{Ci} \mathrm{E}_{ntm}^T = \sum_i \mathbf{c}_{ni} \times \ln \mathbf{E}_{itm}^T$$

Shift-Share Instrument: Derivations

• Representative tourist for group g has preferences,

$$u_g = rac{E_g^T}{G\left(ilde{oldsymbol{p}}
ight)}$$

- Roy's identity gives expenditure shares
- Changes in tourist expenditure are:

$$dX_i^T = \sum_g s_{gi} dE_g^T + \sum_g s_{gi} db_{gi} + \sum_g s_{gi} dp_i$$

• Taking it to the data,

$$\Delta E_{imt}^{T} = \underbrace{\sum_{g} s_{gi} \times \Delta E_{gt}^{T}}_{\text{Group Composition}} + \epsilon_{imt}^{T}$$

• where $\epsilon_{imt}^{T} = \sum_{g} s_{gi} db_{gi} + \sum_{g} s_{gi} dp_{i}$

Distance Coefficient for Gravity by Sector

Distance Elasticity

Source: CXBK Payment Processing (2019)

Commuting Gravity Estimates

Dependent Variables:	commuters	log(commuters+1)	log(commuters)	transactions	log(transactions+1)	log(transactions)
		Cell Phone			Lunchtime	
Model:	(1) Poisson	(2) OLS	(3) OLS	(4) Poisson	(5) OLS	(6) OLS
<i>Variables</i> Idist	-4.48*** (0.107)	-1.51*** (0.037)	-1.17*** (0.054)	-1.53*** (0.028)	-0.134*** (0.002)	-0.411*** (0.012)
Fixed-effects Origin Destination Origin (CT) Destination (CT)	√ √	√ √	√ √	√ √	۲ ۲	√ √
Fit statistics Observations Pseudo R ²	24,025 0.798	24,025 0.117	2,162 0.193	1,051,159 0.598	1,216,609 0.343	42,086 0.091

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Housing Price Regressions

Dependent Variables:	HPRICE				RENT			
	IV - Ref: 2017 Average		IV - Ref: 2017 Low Season		IV - Ref: 2017 Average		IV - Ref: 2017 Low Season	
Model	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Variables $\log E_{it}^T$	0.059*** (0.016)	0.028*** (0.005)	0.059*** (0.016)	0.028*** (0.005)	0.043*** (0.013)	0.008* (0.005)	0.044*** (0.013)	0.009* (0.005)
Fixed-effects i (108) i×month (1,296) i×year (216)	\checkmark	√ √	\checkmark	√ √	\checkmark	√ √	√ √	√ √
<i>Fit statistics</i> Observations Adjusted R ²	2,592 0.983	2,592 0.993	2,592 0.983	2,592 0.993	2,592 0.933	2,592 0.952	2,592 0.933	2,592 0.952

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Income Data: Comparison with Administrative Data

slope = 0.76

Income Distribution across Barcelona

1039.61 - 1260.88	1421.98 - 1486.94	1585.91 - 1623.15	1705.59 - 1767.53	1956.66 - 2132.63
1260.88 - 1352.46	1486.94 - 1541.06	1623.15 - 1662.96	1767.53 - 1859.12	2132.63 - 2396.31
1352.46 - 1421.98	1541.06 - 1585.91	1662.96 - 1705.59	1859 12 - 1956 66	2396.31 - 11806.33

Shift Share: First Stage

Price Regressions: Raw vs 2SLS

Back

Fit of Gravity Specification

slope = -1.4

Expenditure Gravity Regressions

Dependent Variables:	Bilateral Spending		log(Bilateral Spending+1)		log(Bilateral Spending)	
Model:	(1) Poisson	(2) Poisson	(3) OLS	(4) OLS	(5) OLS	(6) OLS
Variables log(travel time)	-2.17*** (0.003)	-2.17*** (0.003)	-1.37*** (0.0009)	-1.37*** (0.0009)	-1.36*** (0.001)	-1.36*** (0.001)
Fixed-effects Origin (CT)	✓		✓		✓	
Destination (CT) Origin (CT)×YEARMONTH Destination (CT)×YEARMONTH	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
<i>Fit statistics</i> Observations Pseudo R ²	43,204,320 0.781	43,125,480 0.788	43,204,320 0.127	43,204,320 0.130	6,566,622 0.120	6,566,622 0.126

Heteroskedasticity-robust standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Is tourism good for the locals (on average)?

• Can aggregate to welfare using a simplified version of welfare results

$$\frac{d\ln\bar{u}}{\partial\ln E^{T}} = \frac{\partial\ln\bar{v}}{\partial\ln E_{i}^{T}} - \frac{\partial\ln\bar{p}_{s}}{\partial\ln E_{i}^{T}}$$

- Results
 - Income elasticity: .04
 - Consumption Price Index elasticity: [.1,.175]
 - House Price elasticity: .06
 - Welfare elasticity: [-.1,-.04]
 - Average increase between February and July \approx 50pc
 - Implies net welfare deterioration of 5pc

Income Regressions: Step 1

Dependent Variable:	In Income (Mean)							
	Lunch	Cell	Cel	ll Phone	Lur	nchtime		
	OLS IV - 2017 Average IV - 2017 I		OLS		OLS IV - 2017 Average IV - 2017 Low Season		IV - 2017 Average	IV - 2017 Low Season
Model:	(1)	(2)	(3)	(4)	(5)	(6)		
Variables								
In MA _{nt}	0.006	0.012	0.032	0.035	0.038***	0.040**		
	(0.004)	(0.012)	(0.021)	(0.025)	(0.015)	(0.018)		
Fixed-effects								
Location	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Month	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Fit statistics								
Observations	26,472	1,776	1,776	1,776	26,472	26,472		
Adjusted R ²	0.888	0.93	0.93	0.93	0.888	0.888		
F -test = t^2 (1st Stage)			204.5	142.8	1,267.2	927.0		

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Comparison with Household Budget Survey

COICOP (2D)	COICOP (2D)	Local	Spanish Tourists	Foreign Tourists	Total	Survey (INE)	Survey Adj (INE)
11	Food/Beverages	32.82 (24.72)	1.32 (5.04)	4.51 (5.10)	38.66	12.96	23.82
21	Alc Beverages	1.97 (1.48)	0.07 (0.28)	0.60 (0.68)	2.64	0.71	1.31
31	Clothing	11.58 (8.72)	1.94 (7.39)	12.00 (13.55)	25.51	3.39	6.23
41	Housing/Utilities	2.81 (2.12)	0.78 (3.00)	0.59 (0.67)	4.19	5.33	9.80
51	Furnishings	10.03 (7.55)	3.32 (12.67)	2.01 (2.27)	15.35	0.88	1.62
61	Health	10.76 (8.10)	1.94 (7.40)	1.82 (2.06)	14.52	2.24	4.12
71	Vehicle Purchase	3.14 (2.36)	0.18 (0.67)	0.32 (0.36)	3.63	3.78	6.95
72	Personal Transp	7.27 (5.47)	2.06 (7.89)	0.70 (0.79)	10.03	6.38	11.73
73	Transp Services	10.13 (7.63)	6.52 (24.90)	9.61 (10.85)	26.26	1.90	3.49
81	Communications	0.30 (0.23)	0.02 (0.09)	0.08 (0.09)	0.40	0.33	0.61
91	Audio-visual	5.06 (3.81)	0.57 (2.17)	1.78 (2.01)	7.40	0.58	1.07
93	Recreational	2.62 (1.97)	0.27 (1.03)	1.21 (1.37)	4.09	1.43	2.63
94	Cultural Services	4.29 (3.23)	0.62 (2.38)	2.79 (3.15)	7.70	0.57	1.05
95	Books, etc	1.64 (1.23)	0.22 (0.85)	0.53 (0.60)	2.39	1.30	2.39
101	Education	1.11 (0.84)	0.10 (0.39)	0.61 (0.69)	1.82	0.77	1.41
111	Restaurants	17.73(13.35)	3.79 (14.46)	19.04 (21.50)	40.56	7.83	14.39
112	Hotels	1.13 (0.85)	1.49 (5.69)	23.12 (26.11)	25.75	1.21	2.22
121	Personal Care	4.84 (3.64)	0.32 (1.23)	0.97 (1.10)	6.14	2.53	4.65
123	Other	2.49 (1.88)	0.36 (1.37)	5.69 (6.42)	8.54	0.32	0.59
Total		131.72 (100)	25.88 (100)	87.97 (100)	245.58	54.4	100

Income Regressions: Step 2

Dependent Variable:	In Income (Mean)					
	Cell	Lunch	Cel	l Phone	Lur	nchtime
	OLS		IV - 2017 Average	IV - 2017 Low Season	IV - 2017 Average	IV - 2017 Low Season
Model:	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
In CiE _{nt}	0.012	0.006	0.007	0.008	-0.005	-0.009
	(0.012)	(0.004)	(0.029)	(0.037)	(0.021)	(0.025)
$\ln \widehat{\text{CiE}}_{nt}(\eta_{it}^0)$			0.045	0.046	0.086***	0.092***
			(0.030)	(0.033)	(0.027)	(0.027)
Fixed-effects						
Location	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Month	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Year	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fit statistics						
Observations	1,776	26,472	1,776	1,776	26,472	26,472
Adjusted R ²	0.93	0.888	0.93	0.93	0.888	0.888
F -test = t^2 (1st Stage)			204.5	142.8	1,267.2	927.0

Heteroskedasticity-robust standard-errors in parentheses Signif. Codes: ***: 0.01, **: 0.05, *: 0.1 Hat Algebra

• Market Clearing Condition

$$\hat{y}_{is} = \pi_{is}^{local} \sum_{n=1}^{N} \left(\pi_{is}^{n} \hat{s}_{nis} \hat{v}_{n} \right) + \pi_{is}^{group} \sum_{g=1}^{G} \left(\pi_{is}^{g} \hat{s}_{gis} \hat{E}_{g}^{T} \right)$$

• Labor Market Clearing

$$\sum_{s} \frac{\beta_{s} \mathbf{y}_{is}}{\sum_{s'} \beta_{s} \mathbf{y}_{is'}} \hat{\mathbf{y}}_{is} = \sum_{n=1}^{N} \frac{\mathbf{w}_{i} \ell_{ni}}{\sum_{n'=1}^{N} \mathbf{w}_{i} \ell_{n'i}} \left(\hat{\mathbf{w}}_{ni} \right)^{\theta} \hat{T}_{n} \hat{W}_{n}^{1-\theta}$$

• Disposable Income

$$\hat{v}_{n} = \sum_{i=1}^{N} \frac{I_{ni} w_{i}}{\sum_{i'=1}^{N} I_{ni'} w_{i'}} (\hat{w}_{ni})^{\theta} \hat{T}_{n} \hat{W}_{n}^{1-\theta}$$

Parameterization

Parameter	Value	Comment
β_{s}	0.65 ∀s	labor share of income
σ_{s}	4 ∀s	elasticity of substitution (within sectors)
η	1.5	elasticity of substitution (between sectors)
heta	1.5	labor dispersion $(1 - \epsilon)$
γ	$\left[0,0,0,0\right]$	consumption spillovers

Data Requirements

Data	Description	Comment
I _{ni}	Commuting Flows	Lunch Expenditures
x _{nis}	Base Local Expenditures	
x _{gis}	Base Tourist Expenditures	
\tilde{E}_i^T	Change in Tourist Expenditures	Difference from Jan to July
Vn	Worker Incomes	

Roy's Identity for Labor Supply

• Income maximization problem:

$$v_n = \max_{\{\ell_i\}} \sum_{i=1}^N w_i \ell_i$$
 s.t. $H_n(\ell_n) = T_n$

• Maximand is the income function $y(w_n, T_n)$ and envelope theorem implies,

$$\frac{\partial \mathbf{y}(\cdot)}{\partial \mathbf{w}_i} = \ell_i$$

- Dual is cost minimization problem, where minimand is $h(w_n, \bar{Y})$
- Differentiating we obtain,

$$\frac{\partial \mathbf{y}(\cdot)}{\partial \mathbf{w}_{i}} = -\frac{\frac{\partial h(\mathbf{w}_{n}, \mathbf{y}(\mathbf{w}_{n}, T_{n}))}{\partial w_{i}}}{\frac{\partial w_{i}}{\partial h(\mathbf{w}_{n}, \mathbf{y}(\mathbf{w}_{n}, T_{n}))}} = \ell_{i}$$

Derivation of Welfare Formula

• Assuming both homothetic demand and a homothetic income maximization problem allows us to write the indirect utility function as,

$$u_n = \frac{T_n J(\boldsymbol{w}_n)}{G(\boldsymbol{p}_n)}$$

• Totally differentiating,

$$\frac{\mathrm{d}u_n}{u_n} = \sum_{i=1}^N \frac{1}{J(\boldsymbol{w}_n)} \frac{\partial \left(J(\boldsymbol{w}_n)\right)}{\partial w_i} w_i \frac{\mathrm{d}w_i}{w_i} + \sum_{i=1}^N G\left(\boldsymbol{p}_n\right) \frac{\partial \left(1/G\left(\boldsymbol{p}_n\right)\right)}{\partial p_{ni}} p_{ni} \frac{\mathrm{d}p_{ni}}{p_{ni}}$$

• Applying Roy's identity for the income maximization and consumption problem from above,

$$\frac{\mathrm{d}u_n}{u_n} = \sum_{i=1}^N \frac{\ell_i}{v_n} w_i \frac{\mathrm{d}w_i}{w_i} - \sum_{i=1}^N \frac{q_{ni}}{v_n} p_{ni} \frac{\mathrm{d}p_{ni}}{p_{ni}}$$

Price Regressions: Group Estimates

Dependent Variables:	δ^{R}_{ist}	$\delta_{ist}^{T.Dom}$	$\delta_{ist}^{T.For}$	δ^{R}_{ist}	$\delta_{ist}^{T.Dom}$	$\delta_{ist}^{T.For}$
		OLS		IV - Re	ef: 2017 Ave	erage
Model:	(1)	(2)	(3)	(4)	(5)	(6)
Variables						
$\ln E_{it}^T$	0.091***	0.485***	0.454***	-0.576***	-0.277***	0.029
	(0.003)	(0.005)	(0.004)	(0.034)	(0.077)	(0.056)
Fixed-effects						
Month-Year×Sector (480)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Location×Sector (21,920)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Location×Sector×Year (43,840)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Location×Sector×Month (263,040)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Fit statistics						
Observations	526,080	526,080	526,080	526,080	526,080	526,080
Adjusted R ²	0.994	0.991	0.994	0.993	0.99	0.993

Normal standard-errors in parentheses

Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

• Preferences

$$u_n(\lbrace q_{ni}\rbrace_{i=1,\ldots,N}) = \left(\sum_{i=1}^N \alpha_{ni}^{1/\sigma} q_{ni}^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$$

• Constraint

$$\sum_{i=1}^{N} p_{ni} q_{ni} \leq v_n$$

• Utility max. gives lagrangian

$$\mathcal{L}(\{q_{ni}\}_{i=1,\dots,N},\lambda) = \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} q_{ni}^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)} + \lambda \left(\mathbf{v}_{n} - \sum_{i=1}^{N} p_{ni} q_{ni}\right)$$

• FOCs

$$\frac{\partial \mathcal{L}}{\partial q_{ni}} = \mathbf{0} \iff \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} q_{ni}^{(\sigma-1)/\sigma}\right)^{1/(\sigma-1)} \alpha_{ni}^{1/\sigma} q_{ni}^{-1/\sigma} = \lambda p_{ni} \quad \forall i = 1, ..., N$$

$$rac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{0} \iff \sum_{i=1}^{N} p_{ni} q_{ni} = \mathbf{v}_n$$

• For two consumption locations *i* and *j*

$$(\frac{\alpha_{ni}}{\alpha_{nj}})^{1/\sigma} (\frac{q_{ni}}{q_{nj}})^{-1/\sigma} = \frac{p_{ni}}{p_{nj}} \frac{\alpha_{ni}}{\alpha_{nj}} = \frac{p_{ni}^{\sigma}}{p_{nj}^{\sigma}} \frac{q_{ni}}{q_{nj}}$$

• For two consumption locations *i* and *j*

$$egin{array}{rcl} rac{lpha_{ni}}{lpha_{nj}} &=& rac{m{p}_{ni}^{\sigma}}{m{p}_{nj}^{\sigma}}rac{m{q}_{ni}}{m{q}_{nj}} \ q_{nj} \ q_{nj} &=& rac{lpha_{nj}}{lpha_{ni}}rac{m{p}_{nj}^{\sigma}}{m{q}_{nj}} q_{ni} \end{array}$$

• × p_{nj}

$$q_{nj}p_{nj} = \frac{\alpha_{nj}}{\alpha_{ni}} \frac{p_{nj}^{\sigma}}{p_{nj}^{\sigma}} q_{ni}p_{nj}$$
$$q_{nj}p_{nj} = \frac{1}{\alpha_{nj}} q_{ni}p_{nj}^{\sigma}\alpha_{nj}p_{nj}^{1-\sigma}$$

$$\sum_{j} q_{nj} p_{nj} = \frac{1}{\alpha_{ni}} q_{ni} p_{ni}^{\sigma} \sum_{j} \alpha_{nj} p_{nj}^{1-\sigma}$$

• using FOC2 (BC)

$$\mathbf{v}_n = \frac{1}{lpha_{ni}} q_{ni} p_{ni}^{\sigma} P_n^{1-\sigma}$$

• and demand for good *i*

$$q_{ni} = \alpha_{ni} p_{ni}^{-\sigma} v_n P_n^{\sigma-1}$$

• We get indirect utility

$$U_{n} = \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} \left[\alpha_{ni} p_{ni}^{-\sigma} v_{n} P_{n}^{\sigma-1}\right]^{(\sigma-1)/\sigma}\right)^{\sigma/(\sigma-1)}$$
$$U_{n} = P_{n}^{\sigma-1} v_{n} \left(\sum_{i=1}^{N} \alpha_{ni} p_{ni}^{1-\sigma}\right)^{\sigma/(\sigma-1)} = P_{n}^{\sigma-1} v_{n} P_{n}^{-\sigma}$$
$$U_{n} = \frac{v_{n}}{P_{n}} = \frac{v_{n}}{\left(\sum_{i=1}^{N} \alpha_{ni} p_{ni}^{1-\sigma}\right)^{1/(1-\sigma)}}$$

• We can also express demand as total spending

$$X_{ni} = p_{ni}q_{ni} = \alpha_{ni} \left(\frac{p_{ni}}{P_n}\right)^{1-\sigma} v_n$$