Urban Welfare: Tourism in Barcelona

Treb Allen¹
Alberto Graziano²
Simon Fuchs³
Rocio Madera⁵
Sharat Ganapati⁴
Judit Montoriol-Garriga²

¹Dartmouth College
²CaixaBank Research
³FRB Atlanta
⁴Georgetown University
⁵Southern Methodist University

LSE
May 14, 2021
New Wave of Urban Research

A. New generation of urban spatial equilibrium models (Ahlfeldt et al., 2015; Allen & Arkolakis, 2016)
 - Structural counterfactuals at a high resolution
 ... but restrictive parametric assumptions and/or structural estimation

B. New generation of urban data
 - Urban economic activity can be observed in unprecedented detail
 - Mobility, expenditure, income networks (cellphone, banks, apps)
 ... but hard to implement tractable and informative empirical analysis

 - Welfare effects of an urban shock...
New Wave of Urban Research

A. New generation of urban spatial equilibrium models (Ahlfeldt et al., 2015; Allen & Arkolakis, 2016)
 • Structural counterfactuals at a high resolution
 ... but restrictive parametric assumptions and/or structural estimation

B. New generation of urban data
 • Urban economic activity can be observed in unprecedented detail
 • Mobility, expenditure, income networks (cellphone, banks, apps)
 ... but hard to implement tractable and informative empirical analysis

• Welfare effects of an urban shock...
 ... in a tractable way without parametric assumptions or structural estimation?
This Paper: A method to estimate welfare effects of urban shocks

1. Both simple and general:
 - Simple: Regression based framework
 - General: No parametric assumptions necessary

2. Based on two insights:
 - Envelope results from residents’ optimal (spatial) cons & commuting patterns
 ⇒ Intuitive analytical expression for intra-city welfare
 - Perturbation of market clearing identifies heterogeneous effects & GE spillovers
This Paper: A method to estimate welfare effects of urban shocks

1. Both simple and general:
 - Simple: Regression based framework
 - General: No parametric assumptions necessary

2. Based on two insights:
 - Envelope results from residents’ optimal (spatial) cons & commuting patterns
 ⇒ Intuitive analytical expression for intra-city welfare
 - Perturbation of market clearing identifies heterogeneous effects & GE spillovers

3. Apply methodology to estimate welfare effect of tourism in Barcelona:
 - Rich new data on expenditure and income spatial patterns
 - Causal (shift-share) identification from variation in vacation timing in RoW
Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP
Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP

- Growing, especially in cities
 - BCN: 25% secular ↑ in past 5 yrs
 - BCN: 200% seasonal ↑ within year
Tourism as an Urban Shock

- Large part of the economy
 - 7% of world exports
 - 330 million jobs
 - Spain: 11% of GDP

- Growing, especially in cities
 - BCN: 25% secular ↑ in past 5 yrs
 - BCN: 200% seasonal ↑ within year

- Unequal welfare gains
Key Findings

1. Methodological
 - Simple reduced form approach has problems (Aggr. bias + SUTVA violation)
 - Incorporating theory-predicted heterogeneity and spillovers identifies het effects
 - Predictions close to those from full structural model

2. Impact of tourism
 - Median resident not substantially affected by (seasonal changes in) tourism...
 - ...but there is substantial heterogeneity with winners and losers
Literature

Urban Quantitative Spatial Economics

Big Data Spatial Economics

Impact of Tourism

First-Order Impact of Price Shocks

Small shocks in general equilibrium
Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion
An Envelope Result for the Welfare effects of Small Shocks

- Arbitrary discrete urban geography: \(N \) blocks, each with resident(s) and firm(s).

- Resident of block \(n = 1, \ldots, N \) chooses goods \(i = 1, \ldots, N \) to (spatially) consume.

\[
 u_n = \frac{v_n}{G(p_n)}
\]

- homothetic preferences
- \(v_n \) is disposable income of representative agent in block \(n \)
- \(G(\cdot) \) is a price aggregator
- \(p_n \) refers to the set of transport-cost and amenity adjusted prices
Supplies labor (spatially) to maximize income.

\[v_n = \max_{\{\ell_i\}} \sum_{i=1}^{N} w_i \ell_i \quad \text{s.t.} \quad H_n(\ell_n) = T_n \]

- \(T_n \) is the time endowment in location \(n \) scaled by population size
- \(H_n(\cdot) \) is a convex function that reflects congestion costs in commuting
- \(\ell_n \) is the vector of commuting cost adjusted labor supply
Intuitive analytical expression for intra-city welfare analysis

Theorem (Welfare Effect of a (small) Shock)

Consider a representative local residing in block \(n \). Applying envelope theorem to consumption, production optimization problems yields:

\[
\frac{d \ln u_n}{\Delta \text{Spatial Income}} = \sum_i c_{ni} \times \partial \ln w_i - \sum_i s_{ni} \times \partial \ln p_i.
\]

• Evaluating the welfare effects of an urban shock requires:
 • Income share data \(\{c_{ni}\}_{n=1,i=1}^{N,N} \)
 • Spatial expenditure data \(\{s_{ni}\}_{n=1,i=1}^{N,N} \)
 • Estimates of key elasticities: \(\{\partial \ln p_i, \partial \ln w_i\}_{i=1}^{N} \)
Heterogeneous Effects & GE Spillovers

Consider an external expenditure shock E^T to a city

- Goods market clearing in location i:
 \[
 y_i = \sum_{n=1}^{N} s_{ni} v_n + s_i^T E^T
 \]

- Labor market clearing in location i:
 \[
 \frac{w_i^{\ell}}{\theta_i^{\ell}} = \sum_{n=1}^{N} s_{ni} v_n + s_i^T E^T
 \]

 - where θ_i^{ℓ} is the output elasticity to labor
Heterogeneous Effects & GE Spillovers

Consider an external \textit{expenditure shock} E^T to a city

\begin{center}
\begin{tikzpicture}
\node[shape=circle,fill=black!20] (A) at (0,0) {E^T};
\node[draw,rectangle] (B) at (-2,-2) {location i};
\node[draw,rectangle] (C) at (2,-2) {location j};
\node[draw,rectangle] (D) at (-4,-4) {location n};
\draw[->] (A) to (B);
\draw[->] (A) to (C);
\draw[->] (A) to (D);
\node (T) at (-1,-3) {s^T_i};
\end{tikzpicture}
\end{center}
Heterogeneous Effects & GE Spillovers

Consider an external expenditure shock E^T to a city \rightarrow Income Shock
Heterogeneous Effects & GE Spillovers

Consider an external expenditure shock E^T to a city → Income Shock → Demand
Heterogeneous Effects & GE Spillovers

Consider an external expenditure shock E^T to a city → Income Shock → Demand → Income Shock
Consider an external expenditure shock E^T to a city \rightarrow Income Shock \rightarrow Demand \rightarrow Income Shock \rightarrow Demand
Heterogeneous Effects & GE Spillovers

Direct Effect:
- Expenditure shock increases prices/wages \(\propto \) to its expenditure share in that location

Indirect Effect:
- Increases prices/wages by increasing residential income elsewhere (spatial multiplier)
Consider an external expenditure shock E^T to a city. Imposing market clearing, keeping expenditure shares and labor allocation constant, we obtain,

$$\frac{\partial \ln p_i}{\partial \ln E^T} = \frac{E^T}{y_i} \left(\sum_n s_{ni} \times v_n \times \sum_j c_{nj} \times \frac{\partial \ln w_j}{\partial \ln E^T} \right)$$

Direct Effect ($\eta_{itm}^{0,T}$)

GE Spillover via Spatial Exp Patterns

$$\frac{\partial \ln w_i}{\partial \ln E^T} = \frac{E^T}{y_i} \left(\sum_n s_{ni} \times v_n \times \sum_j c_{nj} \times \left(\frac{E^T_j}{y_j} \right) \right) + \ldots$$

Direct Effect ($\eta_{itm}^{0,T}$)

GE Spillover via Spatial Exp Patterns
Heterogeneous Effects & GE Spillovers

- A General Methodology for (small) Urban Shocks
 - Intuitive analytical formula to trace out welfare effects
 - Predictions for heterogeneous and GE effects
Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion
New Generation of High Resolution Urban Datasets

- Working closely with Caixabank, a large Spanish bank based in Barcelona

- First paper to combine:
 1. High resolution bilateral expenditure data.
 2. High resolution residential income data.
 3. High resolution commuting data.
New Generation of High Resolution Urban Datasets

- Expenditure Data:

- Income Data:

- Commuting data:
New Generation of High Resolution Urban Datasets

- **Expenditure Data:**
 - Source: Account & point-of-sale data covering 165M+ transactions pa
 - Locals: 1095 residential tiles x 1095 cons tiles x 20 sectors x 36 months
 - Tourists: country of origin x 1095 cons tiles x 20 sectors x 36 months
 - January 2017 - December 2019
 - Covers roughly 54.4 pc of total expenditure

- **Income Data:**

- **Commuting data:**
New Generation of High Resolution Urban Datasets

- Expenditure Data:
- Income Data:
 - Source: Payrolls and UB from over 400k accounts
 - Mean and median income per census tract

- Commuting data:
New Generation of High Resolution Urban Datasets

- Expenditure Data:

- Income Data:

- Commuting data: Two sources:
 1. Imputed from expenditures on weekday lunches (Caixa)
 2. Commuting patterns from cell phone locations (INE)
New Generation of High Resolution Urban Datasets

- Expenditure Data:
- Income Data:
- Commuting data:
- Housing prices:
 - Source: Idealista ("Spanish Zillow")
 - House prices and rental rates
 - Monthly frequency for neighborhoods (more aggregated than census blocks)
Three Stylized Facts

1. Tourism varies across space and time within the city
2. Locals’ spending and income are spatially determined by residence
3. Tourist spending affects local’s spending and incomes
Three Stylized Facts

\[d \ln u_n = \sum_i c_{ni} \times \partial \ln w_i - \sum_i s_{ni} \times \partial \ln p_i. \]

1. **Tourist spending** varies across space and time within the city
 - Provides variation for identification

2. **Locals’ spending and income** are spatially determined by residence
 - Documents the heterogeneous incidence across space

3. **Tourist spending** affects local’s spending and incomes
 - Prima-facie evidence of the effect of tourism
Three Stylized Facts

1. **Tourism varies across space and time within the city**

2. Locals’ spending and income are spatially determined by residence

3. Tourist spending affects local’s spending and incomes
Fact 1: Tourism varies across space and time within the city.
Fact 1: Tourism varies across space and time within the city
Fact 1: Tourism varies across space and time within the city
Three Stylized Facts

1. Tourism varies across space and time within the city

2. **Locals’ spending and income are spatially determined by residence**

3. Tourist spending affects local’s spending and incomes
Fact 2: Local Spending & Income is Spatial
Three Stylized Facts

1. Tourism varies across space and time within the city

2. Locals’ spending and income are spatially determined by residence

3. **Tourist spending affects local’s spending and incomes**
Fact 3: Tourist spending affects local’s spending
Fact 3: Tourist spending affects local’s incomes
Three Stylized Facts

\[d \ln u_n = \sum_{i} c_{ni} \times \partial \ln w_i - \sum_{i} s_{ni} \times \partial \ln p_i. \]

1. **Tourist spending** varies across space and time within the city
 - Provides variation for identification

2. **Locals’ spending and income** are spatially determined by residence
 - Documents the heterogeneous incidence across space

3. **Tourist spending** affects local’s spending and incomes
 - Prima-facie evidence of the effect of tourism
Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion
Empirics

- From Theory to Estimation
- Identification
- Results
From Theory to Estimation

- Welfare Formula

\[
d\ln u_n = \sum_i c_{ni} \times \partial \ln w_i - \sum_i s_{ni} \times \partial \ln p_i.
\]

\(\Delta\) Spatial Income \(\Delta\) Spatial Price Index

- Estimates of key elasticities: \(\left\{ \frac{\partial \ln p_i}{\partial \ln E_i}, \frac{\partial \ln w_i}{\partial \ln E_i} \right\} \) \(i=1^N \)
From Theory to Estimation

- Welfare Formula

\[d \ln u_n = \sum_i c_{ni} \times \partial \ln w_i - \sum_i s_{ni} \times \partial \ln p_i . \]

- \(\Delta \) Spatial Income
- \(\Delta \) Spatial Price Index

- Estimates of key elasticities:

\[\left\{ \frac{\partial \ln p_i}{\partial \ln E_i}, \frac{\partial \ln w_i}{\partial \ln E_i} \right\}_{i=1}^N \]

- Challenges

 - \(p_{it} \) includes non-pecuniary effects
 - our data: income \(v_{nt} \), not wages \(w_{it} \)
 - \(\ln E_{it} \) not exogenous (everyone likes the beach)
From Theory to Estimation: Step 1

- Recovering amenity-adjusted prices
 - From CES preferences
 - δ_{it} is the destination fixed effect of a gravity regression:

$$\ln X_{nit} = \ln \delta_{nt} + \ln \delta_{it} + \beta^{\text{dist}} \ln \text{travel}_{\text{time}}_{nit} + \epsilon_{nit}$$

- PPML estimated
- Including both prices and non-pecuniary effects of tourism
From Theory to Estimation: Step 1

- Recovering amenity-adjusted prices
 - From CES preferences
 - \(\delta_{it} \) is the destination fixed effect of a gravity regression:

\[
\ln X_{nit} = \ln \delta_{nt} + \ln \delta_{it} + \beta^{\text{dist}} \ln travel_time_{nit} + \epsilon_{nit}
\]

- PPML estimated
- Including both prices and non-pecuniary effects of tourism

- Price Regressions (Average Treatment Effect)

\[
\ln \delta_{it} = \alpha + \beta^p \times \ln E^T_{it} + \epsilon_{it}
\]
From Theory to Estimation: Step 1

- Tourist shock at residential level:
 - **Commuting implied exposure** measures impact of tourism on income
 \[
 \ln C_iE_{ntm}^T = \sum_i c_{ni} \times \ln E_{itm}^T
 \]
 - Derived from income maximization problem

Derivations
From Theory to Estimation: Step 1

- Tourist shock at residential level:
 - **Commuting implied exposure** measures impact of tourism on income

 \[
 \ln \text{CiE}^T_{ntm} = \sum_i c_{ni} \times \ln E^T_{itm}
 \]

 - Derived from income maximization problem

- Income Regressions (Average Treatment Effect)

 \[
 \ln v_{nt} = \alpha + \beta^w \times \ln \text{CiE}^T_{ntm} + \epsilon_{it}
 \]
From Theory to Estimation: Step 1

- Income & Price Regressions (Average Treatment Effect)

\[
\ln v_{nt} = \alpha + \beta^w \times \ln C_i E_{ntm}^T + \epsilon_{it}
\]

\[
\ln \delta_{it} = \alpha + \beta^p \times \ln E_{it}^T + \epsilon_{it}
\]
From Theory to Estimation: Step 1

- Income & Price Regressions (Average Treatment Effect)

\[\ln v_{nt} = \alpha + \beta^W \times \ln \text{CiE}_{ntm} + \epsilon_{it} \]

\[\ln \delta_{it} = \alpha + \beta^P \times \ln E_{it}^T + \epsilon_{it} \]

- Challenge
 - Does not take heterog. into account when calculating welfare (Aggregation bias)
From Theory to Estimation: Step 2

- Income & Price Regressions (Heterogeneous Treatment Effect)

\[
\ln v_{nt} = \alpha + \beta^w \times \ln \text{CiE}^T_{ntm} + \beta^{w,het} \times \ln \text{CiE}^T_{ntm} \left(\eta^0_{itm} \right) + \epsilon_{it}
\]

\[
\ln \delta_{it} = \alpha + \beta^p \times \ln E^T_{it} + \beta^{p,het} \times \eta^0_{itm} \times \ln E^T_{it} + \epsilon_{it}
\]

- Variables
 - \(\eta^0_{itm} = E^T_{i} / y_i \) is the direct effect
From Theory to Estimation: Step 2

- Income & Price Regressions (Heterogeneous Treatment Effect)

\[
\ln v_{nt} = \alpha + \beta^w \times \ln \text{CiE}_{ntm}^T + \beta^{w,\text{het}} \times \ln \text{CiE}_{ntm}^T \left(\eta_{itn}^0 \right) + \epsilon_{it}
\]

\[
\ln \delta_{it} = \alpha + \beta^p \times \ln E_{it}^T + \beta^{p,\text{het}} \times \eta_{itn}^0 \times \ln E_{it}^T + \epsilon_{it}
\]

- Challenge
 - Abstracts from GE spillover effects (SUTVA violation)
From Theory to Estimation: Step 3

- Income & Price Regressions (HTE and Controlling for GE Spillovers)

\[\ln v_{nt} = \alpha + \beta^w \times \ln \text{CiE}_{ntm}^T + \beta^{w,het} \times \ln \text{CiE}_{ntm}^T \left(\eta_{l_{itm}}^0 \right) + \epsilon_{it} \]

\[\ln \delta_{it} = \alpha + \beta^p \times \ln E_{it}^T + \beta^{p,het} \times \eta_{l_{itm}}^0 \times \ln E_{it}^T + \beta^{p,GE} \times \eta_{l_{itm}}^0 \times \log E_{itm}^{T,GE} + \epsilon_{it} \]

- Variables
 - \(\ln E_{ntm}^{T,GE} (\eta_{l_{itm}}^0) = \sum_n s_{ni} \times \ln \text{CiE}_{ntm}^T (\eta_{l_{itm}}^0) \) captures (first-degree) GE spillovers
Identification: Shift-Share IV from Het Tourist Pref

- **Challenge**: Unobserved changes in attractiveness/productivity of a location
 - Induces comovement between residential expenditure and tourist expenditure
 - ...or residential income and tourist expenditure
 - ...or measurement error in independent variable (income proxy)
Identification: Shift-Share IV from Het Tourist Pref

- **Our Strategy:** Shift-share IV from Heterogeneous Tourist Preferences
 - Total tourist expenditure is given by:
 \[B_{it}^T = \sum_{g \in T} s_{git}^0 \times E_{gt}^T \]
 - Shares \(s_{git}^0 \) capture spatial preferences for group \(g \) in baseline
 - Shifts from changes in group-specific expenditures \(E_{gt}^T \)
 - Leave-own-location-out
 - Can be derived from non-parametric tourist demand
 - With FE identification comes from unanticipated changes in Tourist expenditures

First Stage
Estimation Results
Income Regressions: Average and Heterogeneous Effects

- Recover average treatment effects

\[\ln v_{nmt} = \gamma_i + \gamma_m + \gamma_t + \beta^w \times \ln \text{CiE}_{ntm}^T + \epsilon_{imt}, \]

- Recover heterogeneous treatment effects

\[\ln v_{nmt} = \gamma_i + \gamma_m + \gamma_t + \beta^w \times \ln \text{CiE}_{ntm}^T + \beta^{\text{w,het}} \times \ln \text{CiE}_{ntm}^T \left(\eta_{itm}^0 \right) + \epsilon_{imt}, \]

- Variables

 - \(\ln v_{nmt} \) is income at residential tile and is regressed on:

\[\ln \text{CiE}_{ntm}^T = \sum_i c_{ni} \times \ln E_{itm}^T \]
Income Regressions: Average and Heterogeneous Effects

<table>
<thead>
<tr>
<th>Model:</th>
<th>OLS (1)</th>
<th>IV - 2017 Low Season (2)</th>
<th>IV - 2017 Low Season (3)</th>
<th>IV - 2017 Low Season (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln CiE<sub>nt</sub></td>
<td>0.012</td>
<td>0.006</td>
<td>0.035</td>
<td>0.008</td>
</tr>
<tr>
<td>(0.012)</td>
<td>(0.004)</td>
<td>(0.025)</td>
<td>(0.037)</td>
<td></td>
</tr>
<tr>
<td>η<sub>it</sub> × ln CiE<sub>nt</sub>(η<sub>it</sub>)</td>
<td>0.046</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(0.033)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-effects</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Location</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Year</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fit statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>1,776</td>
<td>26,472</td>
<td>1,776</td>
<td>26,472</td>
</tr>
<tr>
<td>Adjusted R<sup>2</sup></td>
<td>0.93</td>
<td>0.888</td>
<td>0.93</td>
<td>0.888</td>
</tr>
<tr>
<td>F-test = t<sup>2</sup> (1st Stage)</td>
<td>142.8</td>
<td>142.8</td>
<td>927.0</td>
<td>927.0</td>
</tr>
</tbody>
</table>

Heteroskedasticity-robust standard-errors in parentheses

*Signif. Codes: ***: 0.01, **: 0.05, *: 0.1*
Price Regressions: Step 1

- Recover average treatment effects

\[\ln \delta_{ismt} = \gamma_{tms} + \gamma_{is} + \gamma_{ist} + \gamma_{ism} + \beta_p \times \log E_{itm}^T + \epsilon_{ismt}, \]

- Variables
 - \(\delta_{ismt} \) is destination FE from PPML specification on travel time

Binscatter Plot Gravity Results
Price Regressions: Step 1

<table>
<thead>
<tr>
<th>Model:</th>
<th>OLS</th>
<th>IV - Ref: 2017 Average</th>
<th>IV - Ref: 2017 Low Season</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td></td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td>(9)</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tourists Expenditure: $\ln E_t^T$</td>
<td>0.159***</td>
<td>0.152***</td>
<td>0.091***</td>
</tr>
<tr>
<td></td>
<td>(0.011)</td>
<td>(0.014)</td>
<td>(0.010)</td>
</tr>
<tr>
<td>Fixed-effects</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month-Year \times Sector (480)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Location \times Sector (21,920)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Location \times Sector \times Year (43,840)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Location \times Sector \times Month (263,040)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fit statistics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>526,080</td>
<td>526,080</td>
<td>526,080</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.992</td>
<td>0.993</td>
<td>0.994</td>
</tr>
<tr>
<td>F-test = f^2 (1st Stage)</td>
<td>145.4</td>
<td>138.2</td>
<td>38.4</td>
</tr>
</tbody>
</table>

Heteroskedasticity-robust standard-errors in parentheses

*Signif. Codes: ***: 0.01, **: 0.05, *: 0.1*
Price Regressions: Step 2 and 3

- Recover heterogeneous treatment effects

\[\ln \delta_{ismt} = \gamma_{tms} + \gamma_{is} + \gamma_{ist} + \gamma_{ism} + \beta_{p, het} \times \eta_{itm} \times \log E_{itm}^T + \beta_{p, GE} \times \eta_{itm}^{0, Res} \times \log E_{itm}^{T, GE} + \epsilon_{ismt} \]

- Variables
 - \(\eta_{itm}^{0, Res} = E_i^R / y_i \) is the importance of residential expenditures in a tile
 - (first-order) GE spillover effect is approximated by:

\[\ln E_{ntm}^{T, GE} (\eta_{itm}^0) = \sum_n s_{ni} \times \ln \widehat{C_i E}_{ntm}^T (\eta_{itm}^0) \]
Price Regressions: Step 2 and 3

<table>
<thead>
<tr>
<th>Dependent Variable:</th>
<th>(\hat{\beta}_{\text{est}})</th>
<th>(\hat{\beta}_{\text{est}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV - Ref: 2017 Average</td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\ln E_{iT})</td>
<td>0.019</td>
<td>-0.029</td>
</tr>
<tr>
<td>(\hat{\ln E}{iT} \times \eta{it})</td>
<td>-0.523**</td>
<td>-0.467**</td>
</tr>
<tr>
<td>(\hat{\ln E}{GEit} (\tilde{\eta}{i}))</td>
<td>-0.004***</td>
<td>-0.009***</td>
</tr>
<tr>
<td>(\hat{\ln E}{GEit} (\tilde{\eta}{i}) \times \eta_{it})</td>
<td>0.007***</td>
<td>(0.003)</td>
</tr>
</tbody>
</table>

Fixed-effects
- Month-Year \(\times \) Sector (480)
- Location \(\times \) Sector (21,840)
- Location \(\times \) Sector \(\times \) Year (43,680)
- Location \(\times \) Sector \(\times \) Month (262,080)

Fit statistics
- Observations: 524,160
- Adjusted \(R^2 \): 0.975

Normal standard-errors in parentheses

*Signif. Codes: ***: 0.01, **: 0.05, *: 0.1*
A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion
Is tourism good for the locals (on average)?

- Can aggregate to welfare using a simplified version of welfare results

\[
\frac{d \ln \bar{u}}{\partial \ln E^T} = \frac{\partial \ln \bar{v}}{\partial \ln E^T_i} - \frac{\partial \ln \bar{p}}{\partial \ln E^T_i}
\]

- Average Welfare effects (Low/High Season)
 - Implies net welfare deterioration of 5pc

- Caveats
 - Aggregation Bias
 - SUTVA violation
Is tourism good for the locals?

- Welfare Formula

\[d \ln u_n = \frac{\partial \ln v_n}{\partial \ln E^n_i} \times d \ln E^n_T - \sum_i s_{ni} \times \frac{\partial \ln p_i}{\partial \ln E^n_i} \times d \ln E^n_T \]

- \(s_{ni} \) use baseline averages in 2017

- \(c_{ni} \) only one cross-section available

- Predict income and price changes from January to August
Income (Panel A) and Price Effects (Panel B)
Welfare Effects
Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion
Comparison to Quantitative Model

• Demand

\[G(p_n) = \left(\sum_{s=0}^{S} \alpha_s \left(\left(\sum_{i=1}^{N} \tilde{p}_{nis}^{1-\sigma_s} \right)^{\frac{1}{1-\sigma_s}} \right)^{1-\eta} \right)^{\frac{1}{1-\eta}} \]

• Wage Aggregator (\(\epsilon < 0 \))

\[J(w_n) = \left(\sum_i (w_{ni})^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}} \]

• Production with Specific Factors

\[Q_{is} = F_{is}(\ell_{is}, m_{is}) = z_{is} \ell_{is}^{\beta_s} m_{is}^{1-\beta_s} \]
Equilibrium

- Market Clearing Condition

\[y_{is} = \sum_{n=1}^{N} s_{nis}v_n + \sum_{g=1}^{G} s_{gis}E_g^T \]

- Labor Market Clearing

\[w_{i\ell i} = \sum_{s=0}^{S} \theta_s \sum_{n=1}^{N} s_{nis}v_n + \sum_{s=0}^{S} \theta_s \sum_{g=1}^{G} s_{gis}E_g^T \]

- Disposable Income

\[v_n = \left(\sum_i \left(w_{ni} \right)^{1-\epsilon} \right)^{\frac{1}{1-\epsilon}} \times T_n \]
Price and Income Predictions highly correlated with DEK Results

slope = 1.8, r² = 0.52

slope = 0.51, r² = 0.39
Price Regressions Redux

<table>
<thead>
<tr>
<th>Model:</th>
<th>IV - Ref: 2017 Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent Variable:</td>
<td>δ_{ref}^R</td>
</tr>
<tr>
<td>Variables</td>
<td></td>
</tr>
<tr>
<td>$\ln E_{Rit}^p$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln E_{Rit}^p \times \eta_{it}^0$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln E_{Rit}^p \times p^{10E}$</td>
<td></td>
</tr>
<tr>
<td>$\ln E_{Rit}^{SE}(\eta_{it}^0)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$\ln E_{Rit}^{SE}(\eta_{it}^0) \times \eta_{it}^{0,Res}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Fixed-effects</td>
<td></td>
</tr>
<tr>
<td>Month-Year×Sector (480)</td>
<td>✓</td>
</tr>
<tr>
<td>Location×Sector (21,840)</td>
<td>✓</td>
</tr>
<tr>
<td>Location×Sector×Year (43,680)</td>
<td>✓</td>
</tr>
<tr>
<td>Location×Sector×Month (262,080)</td>
<td>✓</td>
</tr>
<tr>
<td>Fit statistics</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>524,160</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.975</td>
</tr>
</tbody>
</table>

Normal standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Outline of Talk

A General Methodology for (small) Urban Shocks

Intra-city Patterns of Consumption & Income

Empirical Strategy and Identification

Welfare Effects Across the City

Comparison with a Quantitative Model

Conclusion
Conclusion: Estimating the welfare impacts of an urban shock

- **Option A: Quantitative model**
 - (+) Incorporates full GE structure of the city
 - (-) Relies on strong parameterizations

- **Option B: Average treatment effects**
 - (+) Robust to model mis-specification
 - (-) Ignores heterogeneity, GE spillovers (SUTVA likely violated).

- **Option C: A hybrid approach.**
 - (+) Incorporates heterogeneity, (short-run) GE spillovers
 - (+) With a minimal set of model assumptions.

Commuting Implied Exposure Derivation

- Disposable income is given by
 \[v_n = \sum_{i=1}^{N} W_i \ell_{ni} \]

- Totally differentiating and applying the envelope result from above, we obtain,
 \[d \ln v_n = \sum_{i=1}^{N} c_{ni} d \ln w_i \]

- Impact of tourist expenditure shock,
 \[d \ln v_n = \sum_{i=1}^{N} c_{ni} \frac{d \ln w_i}{d \ln E^T} d \ln E^T \]
 \[\ln CiE^T_{ntm} = \sum_{i} c_{ni} \times \ln E^T_{itm} \]
Shift-Share Instrument: Derivations

- Representative tourist for group g has preferences,
 \[
 u_g = \frac{E_g^T}{G(\tilde{p})}
 \]

- Roy’s identity gives expenditure shares

- Changes in tourist expenditure are:
 \[
 dX_i^T = \sum_g s_{gi}dE_g^T + \sum_g s_{gi}db_{gi} + \sum_g s_{gi}dp_i
 \]

- Taking it to the data,
 \[
 \Delta E_{imt}^T = \sum_g s_{gi} \times \Delta E_{gt}^T + \epsilon_{imt}^T
 \]

 \[
 \epsilon_{imt}^T = \sum_g s_{gi}db_{gi} + \sum_g s_{gi}dp_i
 \]

 \text{Group Composition}
Distance Coefficient for Gravity by Sector

Distance Elasticity

Category

- Food/Beverages
- Alc Beverages
- Health
- Personal Transp
- Restaurants
- Clothing
- Personal Care
- Audio-visual
- Personal effects
- Books, etc.
- Housing/Utilities
- Cultural Services
- Furnishings
- Recreational
- Other Services
- Communications
- Education
- Hotels
- Vehicle Purchase
- Transp Services

Source: CXBK Payment Processing (2019)
Commuting Gravity Estimates

<table>
<thead>
<tr>
<th>Model:</th>
<th>(1) Poisson</th>
<th>(2) OLS</th>
<th>(3) OLS</th>
<th>(4) Poisson</th>
<th>(5) OLS</th>
<th>(6) OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ldist</td>
<td>-4.48***</td>
<td>-1.51***</td>
<td>-1.17***</td>
<td>-1.53***</td>
<td>-0.134***</td>
<td>-0.411***</td>
</tr>
<tr>
<td></td>
<td>(0.107)</td>
<td>(0.037)</td>
<td>(0.054)</td>
<td>(0.028)</td>
<td>(0.002)</td>
<td>(0.012)</td>
</tr>
<tr>
<td>Fixed-effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Origin</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Destination</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Origin (CT)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Destination (CT)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fit statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>24,025</td>
<td>24,025</td>
<td>2,162</td>
<td>1,051,159</td>
<td>1,216,609</td>
<td>42,086</td>
</tr>
<tr>
<td>Pseudo R²</td>
<td>0.798</td>
<td>0.117</td>
<td>0.193</td>
<td>0.598</td>
<td>0.343</td>
<td>0.091</td>
</tr>
</tbody>
</table>

Heteroskedasticity-robust standard-errors in parentheses

*Signif. Codes: ***: 0.01, **: 0.05, *: 0.1*
Housing Price Regressions

<table>
<thead>
<tr>
<th>Variables</th>
<th>HPRICE</th>
<th>RENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log E_{it}^*$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>IV - Ref: 2017 Average</td>
<td>0.059***</td>
<td>0.028***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>IV - Ref: 2017 Low Season</td>
<td>0.059***</td>
<td>0.028***</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>Fixed-effects</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>i (108)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>i×month (1,296)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>i×year (216)</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fit statistics</td>
<td>2,592</td>
<td>2,592</td>
</tr>
<tr>
<td>Observations</td>
<td>0.983</td>
<td>0.993</td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.983</td>
<td>0.993</td>
</tr>
</tbody>
</table>

Heteroskedasticity-robust standard-errors in parentheses

*Signif. Codes: ***: 0.01, **: 0.05, *: 0.1*
Income Distribution across Barcelona
Shift Share: First Stage
Price Regressions: Raw vs 2SLS

![Graph 1: Local Expenditure vs Tourist Shock, Raw](Image)

- Local Expenditure, Gravity Estimates, Raw
- Tourist Shock, Raw
- N.R
- Slope = 0.31

![Graph 2: Local Expenditure vs (Predicted) Tourist Shock](Image)

- Local Expenditure, Gravity Estimates, Net of Fixed Effects
- (Predicted) Tourist Shock
- N.R
- Slope = -0.57
Fit of Gravity Specification

![Graph showing the relationship between distance (travel time) and residualized residential expenditure. The slope is indicated as -1.4.]
Expenditure Gravity Regressions

Dependent Variables:
- Bilateral Spending
- log(Bilateral Spending + 1)
- log(Bilateral Spending)

Model:

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model (1)</th>
<th>Model (2)</th>
<th>Model (3)</th>
<th>Model (4)</th>
<th>Model (5)</th>
<th>Model (6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>log(travel time)</td>
<td>-2.17***</td>
<td>-2.17***</td>
<td>-1.37***</td>
<td>-1.37***</td>
<td>-1.36***</td>
<td>-1.36***</td>
</tr>
</tbody>
</table>

Fixed-effects

- **Origin (CT)**
 - ✓
- **Destination (CT)**
 - ✓
- **Origin (CT) × YEARMONTH**
 - ✓
- **Destination (CT) × YEARMONTH**
 - ✓

Fit statistics

<table>
<thead>
<tr>
<th>Observations</th>
<th>Pseudo R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>43,204,320</td>
<td>0.781</td>
</tr>
<tr>
<td>43,125,480</td>
<td>0.788</td>
</tr>
<tr>
<td>43,204,320</td>
<td>0.127</td>
</tr>
<tr>
<td>43,204,320</td>
<td>0.130</td>
</tr>
<tr>
<td>6,566,622</td>
<td>0.120</td>
</tr>
<tr>
<td>6,566,622</td>
<td>0.126</td>
</tr>
</tbody>
</table>

Heteroskedasticity-robust standard-errors in parentheses

*Signif. Codes: ***: 0.01, **: 0.05, *: 0.1*
Is tourism good for the locals (on average)?

- Can aggregate to welfare using a simplified version of welfare results

\[
\frac{d \ln \bar{u}}{\partial \ln E^T} = \frac{\partial \ln \bar{v}}{\partial \ln E^T_i} - \frac{\partial \ln \bar{p}_s}{\partial \ln E^T_i}
\]

- Results
 - Income elasticity: .04
 - Consumption Price Index elasticity: [.1,.175]
 - House Price elasticity: .06
 - Welfare elasticity: [-.1,-.04]
 - Average increase between February and July \(\approx 50\text{pc}\)
 - Implies net welfare deterioration of 5pc
Income Regressions: Step 1

<table>
<thead>
<tr>
<th>Model:</th>
<th>Lunch</th>
<th>Cell</th>
<th>Cell Phone</th>
<th>Lunchtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>ln MA<sub>nt</sub></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ln MA<sub>nt</sub></td>
<td>0.006 (0.004)</td>
<td>0.012 (0.012)</td>
<td>0.032 (0.021)</td>
<td>0.035 (0.025)</td>
</tr>
<tr>
<td>Fixed-effects</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Location</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Month</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Year</td>
<td>✓ ✓ ✓ ✓ ✓ ✓</td>
</tr>
<tr>
<td>Fit statistics</td>
<td>Observations</td>
<td>26,472</td>
<td>1,776</td>
<td>1,776</td>
</tr>
<tr>
<td>Adjusted R<sup>2</sup></td>
<td>0.888</td>
<td>0.93</td>
<td>0.93</td>
<td>0.93</td>
</tr>
<tr>
<td>F-test = t<sup>2</sup> (1st Stage)</td>
<td>204.5</td>
<td>142.8</td>
<td>1,267.2</td>
<td>927.0</td>
</tr>
</tbody>
</table>

*Heteroskedasticity-robust standard-errors in parentheses
*Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
Comparison with Household Budget Survey

<table>
<thead>
<tr>
<th>COICOP (2D)</th>
<th>COICOP (2D)</th>
<th>Local</th>
<th>Spanish Tourists</th>
<th>Foreign Tourists</th>
<th>Total</th>
<th>Survey (INE)</th>
<th>Survey Adj (INE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Food/Beverages</td>
<td>32.82 (24.72)</td>
<td>1.32 (5.04)</td>
<td>4.51 (5.10)</td>
<td>38.66</td>
<td>12.96</td>
<td>23.82</td>
</tr>
<tr>
<td>21</td>
<td>Alc Beverages</td>
<td>1.97 (1.48)</td>
<td>0.07 (0.28)</td>
<td>0.60 (0.68)</td>
<td>2.64</td>
<td>0.71</td>
<td>1.31</td>
</tr>
<tr>
<td>31</td>
<td>Clothing</td>
<td>11.58 (8.72)</td>
<td>1.94 (7.39)</td>
<td>12.00 (13.55)</td>
<td>25.51</td>
<td>3.39</td>
<td>6.23</td>
</tr>
<tr>
<td>41</td>
<td>Housing/Utilities</td>
<td>2.81 (2.12)</td>
<td>0.78 (3.00)</td>
<td>0.59 (0.67)</td>
<td>4.19</td>
<td>5.33</td>
<td>9.80</td>
</tr>
<tr>
<td>51</td>
<td>Furnishings</td>
<td>10.03 (7.55)</td>
<td>3.32 (12.67)</td>
<td>2.01 (2.27)</td>
<td>15.35</td>
<td>0.88</td>
<td>1.62</td>
</tr>
<tr>
<td>61</td>
<td>Health</td>
<td>10.76 (8.10)</td>
<td>1.94 (7.40)</td>
<td>1.82 (2.06)</td>
<td>14.52</td>
<td>2.24</td>
<td>4.12</td>
</tr>
<tr>
<td>71</td>
<td>Vehicle Purchase</td>
<td>3.14 (2.36)</td>
<td>0.18 (0.67)</td>
<td>0.32 (0.36)</td>
<td>3.63</td>
<td>3.78</td>
<td>6.95</td>
</tr>
<tr>
<td>72</td>
<td>Personal Transp</td>
<td>7.27 (5.47)</td>
<td>2.06 (7.89)</td>
<td>0.70 (0.79)</td>
<td>10.03</td>
<td>6.38</td>
<td>11.73</td>
</tr>
<tr>
<td>73</td>
<td>Transp Services</td>
<td>10.13 (7.63)</td>
<td>6.52 (24.90)</td>
<td>9.61 (10.85)</td>
<td>26.26</td>
<td>1.90</td>
<td>3.49</td>
</tr>
<tr>
<td>81</td>
<td>Communications</td>
<td>0.30 (0.23)</td>
<td>0.02 (0.09)</td>
<td>0.08 (0.09)</td>
<td>0.40</td>
<td>0.33</td>
<td>0.61</td>
</tr>
<tr>
<td>91</td>
<td>Audio-visual</td>
<td>5.06 (3.81)</td>
<td>0.57 (2.17)</td>
<td>1.78 (2.01)</td>
<td>7.40</td>
<td>0.58</td>
<td>1.07</td>
</tr>
<tr>
<td>93</td>
<td>Recreational</td>
<td>2.62 (1.97)</td>
<td>0.27 (1.03)</td>
<td>1.21 (1.37)</td>
<td>4.09</td>
<td>1.43</td>
<td>2.63</td>
</tr>
<tr>
<td>94</td>
<td>Cultural Services</td>
<td>4.29 (3.23)</td>
<td>0.62 (2.38)</td>
<td>2.79 (3.15)</td>
<td>7.70</td>
<td>0.57</td>
<td>1.05</td>
</tr>
<tr>
<td>95</td>
<td>Books, etc</td>
<td>1.64 (1.23)</td>
<td>0.22 (0.85)</td>
<td>0.53 (0.60)</td>
<td>2.39</td>
<td>1.30</td>
<td>2.39</td>
</tr>
<tr>
<td>101</td>
<td>Education</td>
<td>1.11 (0.84)</td>
<td>0.10 (0.39)</td>
<td>0.61 (0.69)</td>
<td>1.82</td>
<td>0.77</td>
<td>1.41</td>
</tr>
<tr>
<td>111</td>
<td>Restaurants</td>
<td>17.73 (13.35)</td>
<td>3.79 (14.46)</td>
<td>19.04 (21.50)</td>
<td>40.56</td>
<td>7.83</td>
<td>14.39</td>
</tr>
<tr>
<td>112</td>
<td>Hotels</td>
<td>1.13 (0.85)</td>
<td>1.49 (5.69)</td>
<td>23.12 (26.11)</td>
<td>25.75</td>
<td>1.21</td>
<td>2.22</td>
</tr>
<tr>
<td>121</td>
<td>Personal Care</td>
<td>4.84 (3.64)</td>
<td>0.32 (1.23)</td>
<td>0.97 (1.10)</td>
<td>6.14</td>
<td>2.53</td>
<td>4.65</td>
</tr>
<tr>
<td>123</td>
<td>Other</td>
<td>2.49 (1.88)</td>
<td>0.36 (1.37)</td>
<td>5.69 (6.42)</td>
<td>8.54</td>
<td>0.32</td>
<td>0.59</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>131.72 (100)</td>
<td>25.88 (100)</td>
<td>87.97 (100)</td>
<td>245.58</td>
<td>54.4</td>
<td>100</td>
</tr>
</tbody>
</table>
Income Regressions: Step 2

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cell</th>
<th>Lunch</th>
<th>Cell Phone</th>
<th>Lunchtime</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln CiE<sub>nt</sub></td>
<td>0.012 (0.012)</td>
<td>0.006 (0.004)</td>
<td>0.007 (0.029)</td>
<td>0.008 (0.037)</td>
</tr>
<tr>
<td>ln $\widehat{\text{CiE}{nt}}(\eta{it})$</td>
<td>0.045 (0.030)</td>
<td>0.046 (0.033)</td>
<td>0.086*** (0.027)</td>
<td>0.092*** (0.027)</td>
</tr>
</tbody>
</table>

Fixed-effects
- Location: ✓ ✓ ✓ ✓ ✓ ✓
- Month: ✓ ✓ ✓ ✓ ✓ ✓
- Year: ✓ ✓ ✓ ✓ ✓ ✓

Fit statistics
- Observations: 1,776, 26,472, 1,776, 1,776, 26,472, 26,472
- Adjusted R^2: 0.93, 0.888, 0.93, 0.93, 0.888, 0.888
- F-test = t^2 (1st Stage): 204.5, 142.8, 1,267.2, 927.0

*Heteroskedasticity-robust standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1*
Hat Algebra

- Market Clearing Condition

\[
\hat{y}_{is} = \pi_{is}^{local} \sum_{n=1}^{N} (\pi_{is}^{n} S_{nis} \hat{y}_{n}) + \pi_{is}^{group} \sum_{g=1}^{G} \left(\pi_{is}^{g} S_{gis} \hat{E}_{g} \right)
\]

- Labor Market Clearing

\[
\sum_{s} \frac{\beta_{s}y_{is}}{\sum_{s'} \beta_{s'y_{is'}}} \hat{y}_{is} = \sum_{n=1}^{N} \frac{w_{i\ell_{ni}}}{\sum_{n'=1}^{N} w_{i'\ell_{n'i}}} (\hat{w}_{ni})^\theta \hat{T}_{n} \hat{W}_{n}^{1-\theta}
\]

- Disposable Income

\[
\hat{v}_{n} = \sum_{i=1}^{N} \frac{l_{ni}w_{i}}{\sum_{i'=1}^{N} l_{ni'}w_{i'}} (\hat{w}_{ni})^\theta \hat{T}_{n} \hat{W}_{n}^{1-\theta}
\]
Parameterization

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_s</td>
<td>0.65</td>
<td>labor share of income</td>
</tr>
<tr>
<td>σ_s</td>
<td>4</td>
<td>elasticity of substitution (within sectors)</td>
</tr>
<tr>
<td>η</td>
<td>1.5</td>
<td>elasticity of substitution (between sectors)</td>
</tr>
<tr>
<td>θ</td>
<td>1.5</td>
<td>labor dispersion $(1 - \epsilon)$</td>
</tr>
<tr>
<td>γ</td>
<td>[0, 0, 0, 0]</td>
<td>consumption spillovers</td>
</tr>
</tbody>
</table>
Data Requirements

<table>
<thead>
<tr>
<th>Data</th>
<th>Description</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{ni}</td>
<td>Commuting Flows</td>
<td>Lunch Expenditures</td>
</tr>
<tr>
<td>x_{nis}</td>
<td>Base Local Expenditures</td>
<td></td>
</tr>
<tr>
<td>x_{gis}</td>
<td>Base Tourist Expenditures</td>
<td></td>
</tr>
<tr>
<td>\hat{E}_i^T</td>
<td>Change in Tourist Expenditures</td>
<td>Difference from Jan to July</td>
</tr>
<tr>
<td>ν_n</td>
<td>Worker Incomes</td>
<td></td>
</tr>
</tbody>
</table>
Roy’s Identity for Labor Supply

- Income maximization problem:

\[v_n = \max_{\{\ell_i\}} \sum_{i=1}^N w_i \ell_i \quad \text{s.t.} \quad H_n(\ell_n) = T_n \]

- Maximand is the income function \(y(w_n, T_n) \) and envelope theorem implies,

\[\frac{\partial y(\cdot)}{\partial w_i} = \ell_i \]

- Dual is cost minimization problem, where minimand is \(h(w_n, \bar{Y}) \)

- Differentiating we obtain,

\[\frac{\partial y(\cdot)}{\partial w_i} = -\frac{\partial h(w_n, y(w_n, T_n))}{\partial w_i} = \ell_i \]
Derivation of Welfare Formula

- Assuming both homothetic demand and a homothetic income maximization problem allows us to write the indirect utility function as,

\[u_n = \frac{T_n J(w_n)}{G(p_n)} \]

- Totally differentiating,

\[\frac{du_n}{u_n} = \sum_{i=1}^{N} \frac{1}{J(w_n)} \frac{\partial (J(w_n))}{\partial w_i} w_i \frac{dw_i}{w_i} + \sum_{i=1}^{N} G(p_n) \frac{\partial (1/G(p_n))}{\partial p_{ni}} p_{ni} \frac{dp_{ni}}{p_{ni}} \]

- Applying Roy’s identity for the income maximization and consumption problem from above,

\[\frac{du_n}{u_n} = \sum_{i=1}^{N} \frac{\ell_i}{v_n} w_i \frac{dw_i}{w_i} - \sum_{i=1}^{N} q_{ni} v_n \frac{p_{ni}}{p_{ni}} \]
Price Regressions: Group Estimates

<table>
<thead>
<tr>
<th>Dependent Variables:</th>
<th>(\delta_{ist}^R)</th>
<th>(\delta_{ist}^{T.Domi})</th>
<th>(\delta_{ist}^{T.For})</th>
<th>(\delta_{ist}^R)</th>
<th>(\delta_{ist}^{T.Domi})</th>
<th>(\delta_{ist}^{T.For})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model:</td>
<td>OLS</td>
<td>IV - Ref: 2017 Average</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variables</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>(\ln E_{it}^T)</td>
<td>0.091***</td>
<td>0.485***</td>
<td>0.454***</td>
<td>-0.576***</td>
<td>-0.277***</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.003)</td>
<td>(0.005)</td>
<td>(0.004)</td>
<td>(0.034)</td>
<td>(0.077)</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Fixed-effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Month-Year (\times) Sector (480)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Location (\times) Sector (21,920)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Location (\times) Sector (\times) Year (43,840)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Location (\times) Sector (\times) Month (263,040)</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Fit statistics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>526,080</td>
<td>526,080</td>
<td>526,080</td>
<td>526,080</td>
<td>526,080</td>
<td>526,080</td>
</tr>
<tr>
<td>Adjusted (R^2)</td>
<td>0.994</td>
<td>0.991</td>
<td>0.994</td>
<td>0.993</td>
<td>0.99</td>
<td>0.993</td>
</tr>
</tbody>
</table>

Normal standard-errors in parentheses

*Signif. Codes: ***: 0.01, **: 0.05, *: 0.1*
CES Model Example of Simple Non-Parametric Model

- Preferences
 \[u_n(\{q_{ni}\}_{i=1,...,N}) = \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} q_{ni}^{(\sigma-1)/\sigma} \right)^{\sigma/(\sigma-1)} \]

- Constraint
 \[\sum_{i=1}^{N} p_{ni} q_{ni} \leq v_n \]

- Utility max. gives lagrangian
 \[\mathcal{L}(\{q_{ni}\}_{i=1,...,N}, \lambda) = \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} q_{ni}^{(\sigma-1)/\sigma} \right)^{\sigma/(\sigma-1)} + \lambda \left(v_n - \sum_{i=1}^{N} p_{ni} q_{ni} \right) \]
CES Model Example of Simple Non-Parametric Model

- FOCs

\[
\frac{\partial L}{\partial q_{ni}} = 0 \iff \left(\sum_{i=1}^{N} \alpha_{ni}^{1/\sigma} q_{ni}^{(\sigma-1)/\sigma} \right)^{1/(\sigma-1)} \alpha_{ni}^{1/\sigma} q_{ni}^{-1/\sigma} = \lambda p_{ni} \quad \forall i = 1, \ldots, N
\]

\[
\frac{\partial L}{\partial \lambda} = 0 \iff \sum_{i=1}^{N} p_{ni} q_{ni} = \nu_n
\]

- For two consumption locations \(i\) and \(j\)

\[
\left(\frac{\alpha_{ni}}{\alpha_{nj}} \right)^{1/\sigma} \left(\frac{q_{ni}}{q_{nj}} \right)^{-1/\sigma} = \frac{p_{ni}}{p_{nj}}
\]

\[
\frac{\alpha_{ni}}{\alpha_{nj}} = \frac{p_{ni}^{\sigma} q_{ni}}{p_{nj}^{\sigma} q_{nj}}
\]
CES Model Example of Simple Non-Parametric Model

- For two consumption locations i and j

$$\frac{\alpha_{ni}}{\alpha_{nj}} = \frac{p_{ni}^{\sigma} q_{ni}}{p_{nj}^{\sigma} q_{nj}}$$

$$q_{nj} = \frac{\alpha_{nj}}{\alpha_{ni}} \frac{p_{ni}^{\sigma}}{p_{nj}^{\sigma}} q_{ni}$$

- $\times p_{nj}$

$$q_{nj} p_{nj} = \frac{\alpha_{nj} p_{ni}^{\sigma}}{\alpha_{ni} p_{nj}^{\sigma}} q_{ni} p_{nj}$$

$$q_{nj} p_{nj} = \frac{1}{\alpha_{ni}} q_{ni} p_{ni}^{\sigma} \alpha_{nj} p_{nj}^{1-\sigma}$$
CES Model Example of Simple Non-Parametric Model

- \sum_j

\[
\sum_j q_{nj}p_{nj} = \frac{1}{\alpha_{ni}} q_{ni}p_{ni}^{\sigma} \sum_j \alpha_{nj}p_{nj}^{1-\sigma}
\]

- using FOC2 (BC)

\[
v_n = \frac{1}{\alpha_{ni}} q_{ni}p_{ni}^{\sigma} p_n^{1-\sigma}
\]

- and demand for good i

\[
q_{ni} = \alpha_{ni}p_{ni}^{-\sigma} v_n p_n^{\sigma-1}
\]
CES Model Example of Simple Non-Parametric Model

- We get indirect utility

\[U_n = \left(\sum_{i=1}^{N} \frac{1}{\sigma} \left[\alpha_{ni} P_{ni}^{-\sigma} v_n P_{n}^{\sigma-1} \right]^{(\sigma-1)/\sigma} \right)^{\sigma/(\sigma-1)} \]

\[U_n = P_{n}^{\sigma-1} v_n \left(\sum_{i=1}^{N} \alpha_{ni} P_{ni}^{1-\sigma} \right)^{\sigma/(\sigma-1)} = P_{n}^{\sigma-1} v_n P_{n}^{-\sigma} \]

\[U_n = \frac{v_n}{P_n} = \frac{v_n}{\left(\sum_{i=1}^{N} \alpha_{ni} P_{ni}^{1-\sigma} \right)^{1/(1-\sigma)}} \]

- We can also express demand as total spending

\[X_{ni} = p_{ni} q_{ni} = \alpha_{ni} \left(\frac{p_{ni}}{P_n} \right)^{1-\sigma} v_n \]