INCOME DYNAMICS OF COUPLES: Correlated Risks and Heterogeneous Within-Household Insurance

Christopher Busch^a Rocio Madera^b Fane Groes^c

^aLudwig Maximilian University Munich & CESifo

^bSouthern Methodist University

^cCopenhagen Business School

BANK OF SPAIN June 15, 2022

Motivation

- ▶ Individuals face labor market risk → household earnings risk?
- ► HH earnings risk matters for
 - Fiscal Policy: private vs. public insurance (e.g., Wu & Krueger)
 - Monetary Policy: MPCs (e.g., Bardóczy '20)
 - Macro models w/ micro data: bachelor household (e.g., HSV '10)

HSV '10: Wages and hours worked are characteristics recorded at the individual level, while consumption and welfare are typically measured at the level of the household. This presents an obvious challenge for the bachelor model as a lens for interpreting micro data.

Motivation (cont.)

- Traditional focus:
 - HH-insurance: out-of-LF female reacting to male income shock
 - Measurement: individuals (males) or stably married HHs

But...

Motivation (cont.)

Traditional focus:

- HH-insurance: out-of-LF female reacting to male income shock
- Measurement: individuals (males) or stably married HHs

But...

- - Especially married women (e.g., Olsson '20)
- Same time: divorce and formation of new couples
 - on avg. 2.5 spouses / individual in our sample

This Paper

Characterize earnings dynamics:

- ► in two-earner households
- with family formation and dissolution over the life-cycle
- ▶ in Denmark: high female LF participation throughout

Key role of

- Correlation of spouses' incomes (risk)
 - Sorted by: education, occupation, industry, firm, ...

Implications for

Heterogeneity of intra-household insurance

1. Analyze **co-movement** of earnings changes

- 1. Analyze **co-movement** of earnings changes
- 2. Heterogeneity by labor market characteristics of couples
 - ► More **similar** partners → **worse** earnings stabilization
 - Matters within different groups: age, wealth

- 1. Analyze **co-movement** of earnings changes
- 2. Heterogeneity by labor market characteristics of couples
 - ► More **similar** partners → **worse** earnings stabilization
 - Matters within different groups: age, wealth
- 3. Pass-through to household-level
 - Household income & consumption

- 1. Analyze **co-movement** of earnings changes
- 2. Heterogeneity by labor market characteristics of couples
 - ► More **similar** partners → **worse** earnings stabilization
 - Matters within different groups: age, wealth
- 3. Pass-through to household-level
 - Household income & consumption
- 4. Ongoing: Role of heterogeneity for life-cycle dynamics
 - ► Joint income process with singles/couples & marriage/divorce

Outline

Intro

Data

Joint Income Changes

Pass-Through to Household

A Joint Earnings Process

Amplification: Sorting Patterns

Summary and Outlook

Outline

Intro

Data

Joint Income Changes

Pass-Through to Household

A Joint Earnings Process

Amplification: Sorting Patterns

Summary and Outlook

Data: Danish tax register & social security

- Whole Danish population panel 1991–2018
- Links individuals (couples)
- Info on:
 - Age, education, occupation, sector, firm
 - Earnings: total annual labor earnings
 - Taxes, transfers, assets

Benchmark analysis: 5.3 million couple-year observations

Data: Some Details

- Main data: IDA (Integrated Database for Labour Market Research)
 - BEF (Demographic characteristics and family linkages)
 - UDDA (Education)
 - AKM (Employment)
- Sample: age 18-59 with employment info
- Classifications
 - 2 Education groups: College and non-college (High and Low)
 - ▶ DISCO Classification: 2-digit level → 26 occupations
 - ▶ NACE Classification: Level 1→21 industries

Outline

Intro

Data

Joint Income Changes

Pass-Through to Household

A Joint Earnings Process

Amplification: Sorting Patterns

Summary and Outlook

Flexible Approach to Joint Income Changes

Consider log earnings changes of head and spouse:

$$\Delta y_t^{sp} = f(\Delta y_t^{hd}) \tag{1}$$

Flexible Approach to Joint Income Changes

Consider log earnings changes of head and spouse:

$$\Delta y_t^{sp} = f(\Delta y_t^{hd}) \tag{1}$$

Specify f(·) flexibly:

1. Non-linear in Δy_t^{hd}

2. Heterogeneity by similarity of labor market characteristics

- Education, Occupation, Industry, Firm
- 3. Other sources of heterogeneity
 - Age, Wealth
 - #Children

Measures of Spousal Earnings Comovement

Implied spousal earnings changes for each group

$$\hat{\Delta y}_t^{sp} = f(\Delta y_t^{hd}; \hat{\beta}) \tag{2}$$

$$\hat{\epsilon}^{sp} = \frac{\hat{\Delta y}_t^{sp}}{\Delta y_t^{hd}}$$

(3)

Spousal Change–Education Groups

Spousal Change–Occupation Groups

Spousal Change–Sector Groups

Spousal Change–Sector×Occupation Groups

(d) Sorting by Sector×Occupation

Spousal Change–Firm Groups

Implied Spousal Earnings Elasticity-control age

Other Sources of Heterogeneity

- Spousal labor income (adjustments) one channel of insurance
- Other cannels: household savings; public transfers
 - Interaction?
 - Different relative importance for different groups?

Other Sources of Heterogeneity

- Spousal labor income (adjustments) one channel of insurance
- Other cannels: household savings; public transfers
 - Interaction?
 - Different relative importance for different groups?
- Role of labor market sorting by:
 - Age
 - Wealth (before change)

(cash+deposits+stocks+shares+property+cars-liabilities)

 \Rightarrow Sorting matters within groups

By Age Groups: Spousal Earnings

By Wealth Groups: Spousal Earnings

Head Earnings Change (20 bins)

Outline

Intro

Data

Joint Income Changes

Pass-Through to Household

A Joint Earnings Process

Amplification: Sorting Patterns

Summary and Outlook

Measures of Pass-Through to Household Earnings

► Head earnings change \rightarrow Spouse earnings change

Measures of Pass-Through to Household Earnings

- ▶ Head earnings change \rightarrow Household earnings change
- Combines active and passive intra-household insurance

Measures of Pass-Through to Household Earnings

- ▶ Head earnings change \rightarrow Household earnings change
- Combines active and passive intra-household insurance
- Implied household earnings changes for each group

$$\hat{\Delta y}_t^{hh} = f(\Delta y_t^{hd}; \hat{\beta}) \tag{4}$$

$$\hat{\epsilon}^{hh} = \frac{\hat{\Delta y}_t^{hh}}{\Delta y_t^{hd}} \tag{5}$$

Household Earnings Elasticity

Household Earnings Elasticity

(i) Household Elasticity: Sector

► Household Change

From Income To Consumption

$$\boldsymbol{C} = \boldsymbol{Y} - \boldsymbol{T} - \Delta \boldsymbol{A} \tag{6}$$

From Income To Consumption

$$\boldsymbol{C} = \boldsymbol{Y} - \boldsymbol{T} - \Delta \boldsymbol{A} \tag{6}$$

Components of budget in data:

- Y: Labor + capital income (+imputed cons. value housing)
- T: Tax payments transfer receipts

ΔA: Change asset value

(cash+deposits+stocks+shares+property+cars-liabilities)

⇒ Consumption

Lines up with Expenditure Survey

(De Giorgi, Frederiksen & Pistaferri, ReStud'20)

Measures of Pass-Through to Consumption

Implied household consumption changes for each group

$$\hat{\Delta y}_t^c = f(\Delta y_t^{hd}; \hat{\beta}) \tag{7}$$

$$\hat{\epsilon}^{c} = \frac{\hat{\Delta c}_{t}^{hh}}{\Delta y_{t}^{hd}}$$

(8)

(j) Consumption Change: Step-by-Step

(j) Consumption Change: Step-by-Step

(j) Consumption Change: Step-by-Step

Outline

Intro

Data

Joint Income Changes

Pass-Through to Household

A Joint Earnings Process

Amplification: Sorting Patterns

Summary and Outlook

Income Dynamics: Adding Some Structure

Income Dynamics: Adding Some Structure

- Household earnings:
 - Two earnings (processes)
 - Correlated innovations
 - Transitory-permanent decomposition

(e.g., Blundell, Pistaferri & Saporta-Eksten, AER'16)

Used in quantitative models

(e.g., Attanasio, Low & Sánchez-Marcos, JEEA'05; Krueger & Wu, AEJ:M'21)

Income Dynamics: Adding Some Structure

- Household earnings:
 - Two earnings (processes)
 - Correlated innovations
 - Transitory-permanent decomposition

(e.g., Blundell, Pistaferri & Saporta-Eksten, AER'16)

Used in quantitative models

(e.g., Attanasio, Low & Sánchez-Marcos, JEEA'05; Krueger & Wu, AEJ:M'21)

Allow for heterogeneity by couple-type!

A Simple (Joint) Income Process

A Simple (Joint) Income Process

$$y_t^i = z_t^i + \varepsilon_t^i$$

$$z_t^i = z_{t-1}^i + \eta_t^i$$
(9)

- ▶ If in couple in t, $\varepsilon_t^i \& \eta_t^i$ correlated
- Covariances $\sigma_{\eta\eta}(s_t) \& \sigma_{\varepsilon\varepsilon}(s_t)$ depend on sorting group s_t

A Simple (Joint) Income Process

$$y_t^i = z_t^i + \varepsilon_t^i$$

$$z_t^i = z_{t-1}^i + \eta_t^i$$
(9)

- ▶ If in couple in t, $\varepsilon_t^i \& \eta_t^i$ correlated
- Covariances $\sigma_{\eta\eta}(s_t) \& \sigma_{\varepsilon\varepsilon}(s_t)$ depend on sorting group s_t
- \rightarrow Estimate on (co-)moments of *differences*:

$$\begin{aligned} \mathsf{var}(\Delta y_t^i) = \sigma_\eta^2 + 2\sigma_\varepsilon^2 \\ \mathsf{cov}(\Delta y_t^i, \Delta y_{t+1}^i) = -\sigma_\varepsilon^2 \\ \mathsf{cov}(\Delta y_t^m, \Delta y_t^f | \mathbf{s}_t = \mathbf{s}; \mathbf{s}_{t+1} = \mathbf{s}') = \sigma_{\eta\eta}(\mathbf{s}') + \sigma_{\varepsilon\varepsilon}(\mathbf{s}) + \sigma_{\varepsilon\varepsilon}(\mathbf{s}') \\ \mathsf{cov}(\Delta y_t^m, \Delta y_{t+1}^f | \mathbf{s}_t = \mathbf{s}; \mathbf{s}_{t+1} = \mathbf{s}') = -\sigma_{\varepsilon\varepsilon}(\mathbf{s}') \end{aligned}$$

Estimates

- Consider different versions for *s*:
 - 1. none
 - 2. Education sorting: $s \in \{same \ educ, not \ same \ educ\}$
 - 3. Occupation sorting: same occ vs. not same occ
 - 4. Sector, Career, Firm

Estimates

Consider different versions for s:

- 1. none
- 2. Education sorting: $s \in \{same \ educ, not \ same \ educ\}$
- 3. Occupation sorting: same occ vs. not same occ
- 4. Sector, Career, Firm
- \rightarrow Correlations (old version): $\rho_{\varepsilon} = -2.69\%$ and $\rho_{\eta} = 3.74\%$
- With educ sorting:

$$ho_{arepsilon}(\text{same}) = -4.42\%,
ho_{arepsilon}(\text{not}) = -2.86\%,
ho_{\eta}(\text{same}) = 5.14\%,
ho_{\eta}(\text{not}) = 2.28\%$$

► With occup sorting:

$$\rho_{\varepsilon}(\text{same}) = -3.73\%, \rho_{\varepsilon}(\text{not}) = -7.03\%, \\
\rho_{\eta}(\text{same}) = 10.45\%, \rho_{\eta}(\text{not}) = 3.21\%$$

Richer Income Process

Process estimated on 'stable couples' not representative

- $\rightarrow~$ Estimate individual male and female processes
- \rightarrow ...using male and females data
- $\rightarrow\ ...$ together with process of 'marriage' and 'divorce'
- Resulting income dynamics:
 - Correlated shocks while in couple
 - Additional conditional income shock upon divorce

$$y_t^i = z_t^i + \varepsilon_t^i + \delta_t^{\varepsilon_i} \cdot \mathbf{1} \{ div_t = \mathbf{1} \}$$

$$z_t^i = z_{t-1}^i + \eta_t^i + \delta_t^{\eta_i} \cdot \mathbf{1} \{ div_t = \mathbf{1} \}$$
(10)

Richer Income Process

Process estimated on 'stable couples' not representative

- $\rightarrow~$ Estimate individual male and female processes
- ightarrow ...using male and females data
- $\rightarrow\ ...$ together with process of 'marriage' and 'divorce'
- Resulting income dynamics:
 - Correlated shocks while in couple
 - Additional conditional income shock upon divorce

$$y_t^i = z_t^i + \varepsilon_t^i + \delta_t^{\varepsilon_i} \cdot \mathbf{1} \{ div_t = \mathbf{1} \}$$

$$z_t^i = z_{t-1}^i + \eta_t^i + \delta_t^{\eta_i} \cdot \mathbf{1} \{ div_t = \mathbf{1} \}$$
(10)

- Marriage and divorce shocks orthogonal to income shocks
- → Separately identified!

Earnings dynamics and family changes

At every age, each single male and female can:

- form a couple with probability p^{form}: receive ε, η, correlated with her spouse's ε, η in the next period
- stay single: receive ε, η

At every age, each male and female in couples can:

- divorce with probability *p^{div}*: receive ε, η, correlated with her (outgoing) spouse's ε, η AND δ^η, δ^ε
- ▶ stay in the couple: receive ε , η , correlated with her spouse's ε , η

Couple formation Process (p^{form})

Divorce Process (*p^{div}*)

Outline

Intro

Data

Joint Income Changes

Pass-Through to Household

A Joint Earnings Process

Amplification: Sorting Patterns

Summary and Outlook

Sorting Patterns

One simple measure (Eika, Mogstad, Zafar, JPE'19):

(11)

Sorting Patterns

One simple measure (Eika, Mogstad, Zafar, JPE'19):

$$s(a,b) = \underbrace{\frac{P(e^{sp} = a, e^{hd} = b)}{P(e^{sp} = a)P(e^{hd} = b)}}_{random: \text{ product of marginals}}$$

(11)

Couples positively sorted by characteristics

- Education Sorting: $s(H, H) \approx 2$ and $s(L, L) \approx 1.2$
- ► Occupation and Sector: ≈ 2.2
- ⇒ Amplifies aggregate importance of above channels

Sorting Coefficient Across Occupation-Pairs

(m) Sorting Coefficient

🕨 3d heatmap

Outline

Intro

Data

Joint Income Changes

Pass-Through to Household

A Joint Earnings Process

Amplification: Sorting Patterns

Summary and Outlook

Full population Danish register data

- Full population Danish register data
- Study couples' income co-movement

- Full population Danish register data
- Study couples' income co-movement
- Heterogeneity of joint labor market characteristics
 - \rightarrow Matters for joint **earnings changes**
 - ightarrow Holds within groups of age, wealth
 - \rightarrow Translates to household outcomes: consumption

- Full population Danish register data
- Study couples' income co-movement
- Heterogeneity of joint labor market characteristics
 - \rightarrow Matters for joint **earnings changes**
 - ightarrow Holds within groups of age, wealth
 - \rightarrow Translates to household outcomes: **consumption**
- Couples sort:
 - Education, sector, occupation
 - Amplifies role of similarity for aggregate

Outlook: Current & Future Steps

- Life-cycle dynamics for different sorting groups
 - Use panel dimension of data
 - Divorce risk, marriage risk
- Decompose spousal labor supply vs. savings vs. transfers
- Extensive margin of adjustment
 - Subsample: spell data
- Source of heterogeneous reaction to policy

Next: Quantitative Model

- Sorting/distribution of couples matters for
 - Within-household insurance ("added worker effect")
 - Evaluation of public insurance

Next: Quantitative Model

- Sorting/distribution of couples matters for
 - Within-household insurance ("added worker effect")
 - Evaluation of public insurance
- Model featuring:
 - Incomplete markets
 - Distribution of couples over pairs of occupation
 - Head earnings process; Spouse wage process
 - \longrightarrow Endogenous labor supply of spouse
 - Tax & transfer function

Joint Dynamics: Average by Group

Spousal income changes:

$$\Delta y_t^{sp} = \beta_0 + \tilde{f}(\Delta y_t^{hd}) + \mathbf{X}_t^{sp} \gamma + \mathbf{Y}\delta + u_{st}$$
(12)

with

$$\tilde{f}(\Delta y_t^{hd}) = \left(I_{o_t^{hd} \neq o_t^{sp}} \beta^{\text{not same } x} + I_{o_t^{hd} = o_t^{sp}} \beta^{\text{same } x}\right) \Delta y_t^{hd}$$
(13)

> X_t^{sp} : age quadratic, education dummies, occupation dummies

•
$$\Delta y_t^i$$
: 1-year income change

Group-Specific Coefficients

(n) Elasticities for Different Sorting Vars

Back 🚺 🕨 Interacted 🕽

Group-Specific Coefficients: By Education Pairs

(o) Elasticities-Educ⊗Sorting Var

Back to Average

Household Elasticity

Household Elasticity

Household Elasticity

(p) Household Change: Step-by-Step

Household Elasticity

(p) Household Change: Step-by-Step

Household Elasticity

(p) Household Change: Step-by-Step

Household Elasticity

By Age Groups: Spousal Earnings

By Age Groups: Household Consumption

Busch, Madera & Groes (LMU, SMU & CBS): Correlated Risks

By Wealth Groups: Spousal Earnings

Busch, Madera & Groes (LMU, SMU & CBS): Correlated Risks

By Wealth Groups: Household Consumption

► Change

Busch, Madera & Groes (LMU, SMU & CBS): Correlated Risks

By Recent Income Groups: Spousal Earnings

By Recent Income Groups: Household Consumption

Busch, Madera & Groes (LMU, SMU & CBS): Correlated Risks

By Recent Income Groups: Spousal Earnings

Busch, Madera & Groes (LMU, SMU & CBS): Correlated Risks

By Recent Income Groups: Household Consumption

Busch, Madera & Groes (LMU, SMU & CBS): Correlated Risks

676 Underlying Occupation Pairs

Back to 2d