The Insurance Value of Public Insurance Against Idiosyncratic Income Risk

Christopher Busch^a Rocio Madera^b

^aLMU Munich, CESifo & CEPR

^bSouthern Methodist University & CESifo

SAEE MEETINGS U Illes Balears December, 2024

Motivation

Households face unexpected income changes (income risk)

- only partially self-insurable
- cyclical: more $(-\Delta)$ in recessions and more $(+\Delta)$ in expansions

Motivation

Households face unexpected income changes (income risk)

- only partially self-insurable
- cyclical: more $(-\Delta)$ in recessions and more $(+\Delta)$ in expansions

Tax and transfer system offers insurance beyond self-insurance

- How much insurance beyond self-insurance?
- How valuable is this insurance?
 - ... against cyclical variation?

Motivation

Households face unexpected income changes (income risk)

- only partially self-insurable
- cyclical: more $(-\Delta)$ in recessions and more $(+\Delta)$ in expansions

Tax and transfer system offers insurance beyond self-insurance

- How much insurance beyond self-insurance?
- How valuable is this insurance?

... against cyclical variation?

Here: can we answer these questions with only income data?

Background: What Does Tax and Transfer System Do?

From Busch, Domeij, Guvenen, Madera 2022

1. Reduce overall dispersion (variance) of $\Delta \log y$

2. Reduce cyclicality of asymmetry (Skewness) of $\Delta \log y$ (BDGM'22)

Background: What Does Tax and Transfer System Do?

From Busch, Domeij, Guvenen, Madera 2022

1. Reduce overall dispersion (variance) of $\Delta \log y$

2. Reduce cyclicality of asymmetry (Skewness) of $\Delta \log y$ (BDGM'22)

Background: What Does Tax and Transfer System Do?

From Busch, Domeij, Guvenen, Madera 2022

- 1. Reduce overall dispersion (variance) of $\Delta \log y$
- 2. Reduce cyclicality of asymmetry (Skewness) of $\Delta \log y$ (BDGM'22)

$Corr(\Delta \log GDP_t, m)$		Dispersion	Skewness	Upper Tail	Lower Tail
US	Pre-Gov	0.04	1.91***	0.81***	-0.78***
	Post-Gov	0.34	1.09***	0.55***	-0.21
Sweden	Pre-Gov	-0.02	2.24***	0.50***	-0.52*
	Post-Gov	-0.41*	0.94**	-0.03	-0.38**

Median Growth

Busch, Madera (LMU & SMU): Public Insurance Against Idiosyncratic Risk

Distribution in normal times

Busch, Madera (LMU & SMU): Public Insurance Against Idiosyncratic Risk

Symmetric increase in income risk

► Asymmetric increase in downside risk

Busch, Madera (LMU & SMU): Public Insurance Against Idiosyncratic Risk

► Asymmetric increase in upside risk

- Questions:
 - Insurance and welfare value of existing tax and transfer policy?
 - Potential further gain of reducing the cyclical part of income risk?

- Questions:
 - Insurance and welfare value of existing tax and transfer policy?
 - Potential further gain of reducing the cyclical part of income risk?
- Restriction: only earnings data (pre- and post-gov)
 - no consumption data, no tax function

- Questions:
 - Insurance and welfare value of existing tax and transfer policy?
 - Potential further gain of reducing the cyclical part of income risk?
- Restriction: only earnings data (pre- and post-gov)
 - no consumption data, no tax function

▶ How? economic model with risky income & partial insurance

- 1. estimate income processes: pre- and post-gov
- 2. write cons. as function of variances + insurance parameter
- 3. get insurance that makes agents indifferent between both streams

- Questions:
 - Insurance and welfare value of existing tax and transfer policy?
 - Potential further gain of reducing the cyclical part of income risk?
- Restriction: only earnings data (pre- and post-gov)
 - no consumption data, no tax function

▶ How? economic model with risky income & partial insurance

- 1. estimate income processes: pre- and post-gov
- 2. write cons. as function of variances + insurance parameter
- 3. get insurance that makes agents indifferent between both streams
- Answer (for Sweden): 43% variation smoothed (CEV of 14.3%)
 - after adjusting for initial dispersion: **6%** (CEV of 1.3%)

- Questions:
 - Insurance and welfare value of existing tax and transfer policy?
 - Potential further gain of reducing the cyclical part of income risk?
- Restriction: only earnings data (pre- and post-gov)
 - no consumption data, no tax function

▶ How? economic model with risky income & partial insurance

- 1. estimate income processes: pre- and post-gov
- 2. write cons. as function of variances + insurance parameter
- 3. get insurance that makes agents indifferent between both streams
- Answer (for Sweden): 43% variation smoothed (CEV of 14.3%)
 - after adjusting for initial dispersion: 6% (CEV of 1.3%)
 - extra gains from further removing cyclicality: 27% (CEV of 5.9%)

Introduction

Measuring the Insurance Value of Taxes and Transfers

Results: Insurance Value of Taxes and Transfers

Summary and Conclusion

Outline

Introduction

Measuring the Insurance Value of Taxes and Transfers Overview of "Measurement Tool"

Key Input 1: Income Process Key Input 2: Model Framework

Results: Insurance Value of Taxes and Transfers Inspecting the Channels

Summary and Conclusion

Measurement Tool: Intuition

 Δ *Income* $\xrightarrow[1-\lambda (insurance)] \Delta$ *Consumption*

Measurement Tool: Intuition

 $\Delta \textit{Income} \xrightarrow[1-\lambda \text{ (insurance)}]{} \Delta \textit{Consumption}$

- ▶ $0 < \lambda < 1$: partial insurance
- \blacktriangleright λ : captures total insurance by taxes/transfers & other sources
- Blundell et al. (2008): empirical application with disp. income:

$$\lambda = 1 - \frac{Cov(\Delta \log y^{post}, \Delta \log c)}{Var(\Delta \log y^{post})}$$

Needs

- identification strategy (Panel IV in BPP)
- Income and consumption panel data
- Our goal: measure the role of taxes/transfers alone

Measurement Tool: Illustration with Tax Function

Measurement Tool: Illustration with Tax Function

- ▶ Tax function in the style of Benabou (2000,2002), HSV (2017)
- Post-gov. income can be written as: $y^{post} = \phi y^{1-\tau}$ and
- ▶ progressivity τ = elast. of disp. income wrt gross income, 1τ :

$$\Delta \log y^{post} = (1 - \tau) \Delta \log y,$$

and thus

$$\frac{\operatorname{cov}(\Delta \log c, \Delta \log y^{\operatorname{post}})}{\operatorname{var}(\Delta \log y^{\operatorname{post}})} = \frac{(1-\tau)\operatorname{cov}(\Delta \log c, \Delta \log y)}{(1-\tau)^2 \operatorname{var}(\Delta \log y)},$$

$$\iff \lambda = 1 - (1 - \tau)(1 - \lambda^{disp}).$$

Measurement Tool: Illustration with Tax Function

some bounds for common reference values:

$$\lambda = \begin{cases} \mathbf{1} & \text{if } \lambda^{post} = \mathbf{1} \text{ (full self-insurance)} \\ \tau & \text{if } \lambda^{post} = \mathbf{0} \text{ (no self-insurance)} \end{cases}$$

- if agents can **fully** self-insure \rightarrow public insurance is irrelevant
- ► If agents cannot self-insure (hand-to-mouth) → total insurance = public insurance = degree of progressivity

Measurement Tool: Our Exercise

- \rightarrow Given some λ^{post} , find λ^{pre} s.t. indifferent between worlds
 - earn PRE with insurance λ and
 - earn POST with insurance λ^{post}

Advantages

- ▶ No need for mechanical link between pre and post-gov income
- No need for consumption panel data

Need Two Things

- 1. Income processes PRE and POST government
- 2. Model:
 - Link income to consumption
 - Control degree of partial insurance by a parameter

Outline

Introduction

Measuring the Insurance Value of Taxes and Transfers Overview of "Measurement Tool" Key Input 1: Income Process Key Input 2: Model Framework

Results: Insurance Value of Taxes and Transfers Inspecting the Channels

Summary and Conclusion

Estimation of Income Process

- Estimate flexible process using SMM Specification
 - Transitory + permanent components
 - Shock distributions: mixtures of 3 Normals
 - Distributions vary over the BC (as in McKay (2017))
- Targets:
 - Timeseries of L9050, L5010, of 1-, 3-, 5-year Δy
 - Average of Crow-Siddiqui Kurtosis of 1-, 3-, 5-year Δy
 - Age profile of cross-sectional variance
- Data:
 - Swedish tax register sample LINDA 1979–2010
 - Household income from wages and salaries
 - Taxes and transfers

Estimated Process: Permanent Component

Estimated Process: Permanent Component

Estimated Process: Permanent Component

2010: GDP growth 2.49% Pre-Government Income Post-Government Income Gaussian - Gaussian Mixture Mixture Variance = 0.0008 Variance = 0.0004 Skewness = 0.03 Skewness = 0.13 K. Skewness = 0.00 K. Skewness = 0.02 Kurtosis = 2.99 Kurtosis = 3.12 CS Kurtosis = 2.92 CS Kurtosis = 2.95 -0.05 -0.1 -0.05 0.05 0.1 0.05 Log Income Changes Log Income Changes

0.1

Main Features of Earnings Changes in Sweden

Taxes and transfers

- reduce overall dispersion of income changes
- reduce the cyclicality of dispersion and skewness (ϕ s)
- increase concentration of income changes

Outline

Introduction

Measuring the Insurance Value of Taxes and Transfers

Overview of "Measurement Tool" Key Input 1: Income Process Key Input 2: Model Framework

Results: Insurance Value of Taxes and Transfers Inspecting the Channels

Summary and Conclusion

The Model Framework

- ► Island economy inspired by Heathcote/Storesletten/Violante (AER'14)
- no-trade equilibrium

The Model Framework

- ► Island economy inspired by Heathcote/Storesletten/Violante (AER'14)
- no-trade equilibrium
- → **Incomplete Markets** model with:
- Partial insurance against income risk
- ► Key feature: analytical link from income shocks to consumption
- Obtained through (hypothetical) split into 2 shocks:
 - ► Fully insurable vs. fully uninsurable
- yet isomorphic to Bewley models

Model: Stochastic Endowment Economy

- Discrete time
- Continuum of islands
- On each island: continuum of agents
- Perpetual youth: survival prob.

Model: Stochastic Endowment Economy

- Discrete time
- Continuum of islands
- On each island: continuum of agents
- Perpetual youth: survival prob. δ
- Two types of shocks to income:
 - Idiosyncratic shocks (hitting individual on island) (wash out within island)
 - Island-level shocks (hitting whole island) (wash out across islands: no aggregate uncertainty)

Model: Stochastic Endowment Economy

- Discrete time
- Continuum of islands
- On each island: continuum of agents
- Perpetual youth: survival prob. δ
- Two types of shocks to income:
 - Idiosyncratic shocks (hitting individual on island) (wash out within island)
 - Island-level shocks (hitting whole island) (wash out across islands: no aggregate uncertainty)
- Island=group of agents with same history of island-level shocks
- i.e. Islands capture insurance mechanisms available to households

(Heterogeneous) Endowments and Preferences

Endowment process: Permanent and transitory components

$$y_{t} = y_{t}^{island} + y_{t}^{idio}$$

$$y_{t}^{i} = z_{t}^{i} + \varepsilon_{t}^{i}, \qquad \varepsilon_{t}^{i} \sim F_{\varepsilon,t}^{i}, \qquad \text{for } i \in \{island, idio\} \qquad (1)$$

$$z_{t}^{i} = z_{t-1}^{i} + \eta_{t}^{i}, \qquad \eta_{t}^{i} \sim F_{\eta,t}^{i}, \qquad \text{for } i \in \{island, idio\}$$

where $\int \exp(x_t^i) dF_{x,t}^i = 1$ for $i \in \{island, idio\}$ and $x \in \{\varepsilon, \eta\}$

(Heterogeneous) Endowments and Preferences

Endowment process: Permanent and transitory components

$$y_{t} = y_{t}^{island} + y_{t}^{idio}$$

$$y_{t}^{i} = z_{t}^{i} + \varepsilon_{t}^{i}, \qquad \varepsilon_{t}^{i} \sim F_{\varepsilon,t}^{i}, \qquad \text{for } i \in \{island, idio\} \qquad (1)$$

$$z_{t}^{i} = z_{t-1}^{i} + \eta_{t}^{i}, \qquad \eta_{t}^{i} \sim F_{\eta,t}^{i}, \qquad \text{for } i \in \{island, idio\}$$

where $\int \exp(x_t^i) dF_{x,t}^i = 1$ for $i \in \{island, idio\}$ and $x \in \{\varepsilon, \eta\}$

- Preferences (standard)
 - max present-value lifetime utility
 - Time- and state-separable utility
 - Per-period utility: $U(c) = \log(c)$

Asset Market Structure and Equilibrium

- \rightarrow No-(across-island)-trade equilibrium:
 - Within-island shocks fully insured
 - Island-level shocks uninsured

Asset Market Structure and Equilibrium

- \rightarrow No-(across-island)-trade equilibrium:
 - Within-island shocks fully insured
 - Island-level shocks uninsured
- ► Equilibrium log consumption:

$$\log c_t \left(\mathbf{x}_t, y_t^{idio} \right) = y_t^{island} + \log \int \exp \left(y_t^{idio} \right) dF_{y^{idio},t}^a$$
(2)

where \mathbf{x}_t : age **a** and island-income y_t^{island}

Gives (log) consumption change:

$$\Delta \log c_t = \eta_t^{island} + \Delta \varepsilon_t^{island}$$

Measure of Partial Insurance in Model

- Consider cons. response to total permanent/transitory shocks
 - Total permanent: $\eta_t = \eta_t^{idio} + \eta_t^{island}$
 - Total transitory: $\varepsilon_t = \varepsilon_t^{idio} + \varepsilon_t^{island}$

Measure of Partial Insurance in Model

Consider cons. response to total permanent/transitory shocks

- Total permanent: $\eta_t = \eta_t^{idio} + \eta_t^{island}$
- Total transitory: $\varepsilon_t = \varepsilon_t^{idio} + \varepsilon_t^{island}$
- Consumption response to permanent component:

$$1 - \lambda_{perm} = \frac{\operatorname{cov}(\Delta \log c_t, \eta_t)}{\operatorname{var}(\eta)}$$
(3)
$$= \frac{\operatorname{cov}(\eta_t^{island} + \Delta \varepsilon_t^{island}, \eta_t)}{\operatorname{var}(\eta_t)} = \frac{\operatorname{cov}(\eta_t^{island}, \eta_t^{island} + \eta_t^{idio})}{\operatorname{var}(\eta_t)}$$
$$= \frac{\operatorname{var}(\eta_t^{island})}{\operatorname{var}(\eta_t^{island} + \eta_t^{idio})} = \frac{\operatorname{var}(\eta_t^{island})}{\operatorname{var}(\eta_t^{island}) + \operatorname{var}(\eta_t^{idio})}$$

Similar for transitory shocks, but we'll impose $\lambda_{trans} = 1$ (full ins.)

Measure of Partial Insurance in Model

Consider cons. response to total permanent/transitory shocks

- Total permanent: $\eta_t = \eta_t^{idio} + \eta_t^{island}$
- Total transitory: $\varepsilon_t = \varepsilon_t^{idio} + \varepsilon_t^{island}$
- Consumption response to permanent component:

$$1 - \lambda_{perm} = \frac{\operatorname{cov}(\Delta \log c_t, \eta_t)}{\operatorname{var}(\eta)}$$
(3)
$$= \frac{\operatorname{cov}(\eta_t^{island} + \Delta \varepsilon_t^{island}, \eta_t)}{\operatorname{var}(\eta_t)} = \frac{\operatorname{cov}(\eta_t^{island}, \eta_t^{island} + \eta_t^{idio})}{\operatorname{var}(\eta_t)}$$
$$= \frac{\operatorname{var}(\eta_t^{island})}{\operatorname{var}(\eta_t^{island} + \eta_t^{idio})} = \frac{\operatorname{var}(\eta_t^{island})}{\operatorname{var}(\eta_t^{island}) + \operatorname{var}(\eta_t^{idio})}$$

- Similar for transitory shocks, but we'll impose $\lambda_{trans} = 1$ (full ins.)
- > λ_{perm} : % of variance accounted for by idio. component

Model as Measurement Device

- Earnings process is fundamental
- ▶ Tax and transfer system: alters the endowment stream
- We do not explicitly model the tax system
- Degree of partial insurance λ exogenous
 - (= fraction of shocks accounted for by idio. vs. island shocks)

Model as Measurement Device

- Earnings process is fundamental
- ▶ Tax and transfer system: alters the endowment stream
- We do not explicitly model the tax system
- Degree of partial insurance λ exogenous
 - (= fraction of shocks accounted for by idio. vs. island shocks)
- Consider two separate worlds:

Model as Measurement Device

- Earnings process is fundamental
- ▶ Tax and transfer system: alters the endowment stream
- We do not explicitly model the tax system
- Degree of partial insurance λ exogenous
 - (= fraction of shocks accounted for by idio. vs. island shocks)
- Consider two separate worlds:
- 1. Households face income process POST (post-government)
- 2. Households face income process PRE (pre-government)

Exercise

• fix insurance under POST: $\lambda_{perm}^{post} = 0$

 $\rightarrow\,$ Assume no further insurance beyond T&T system

- find λ_{perm}^{pre} s.t. indifferent between (ex ante)
 - facing PRE stream with compressed distribution given by λ_{perm}^{pre}
 - facing POS stream as is
- $\rightarrow\,$ Measure of insurance provided by tax and transfer system

Exercise

• fix insurance under POST: $\lambda_{perm}^{post} = 0$

 $\rightarrow\,$ Assume no further insurance beyond T&T system

- find λ_{perm}^{pre} s.t. indifferent between (ex ante)
 - facing PRE stream with compressed distribution given by λ_{perm}^{pre}
 - facing POS stream as is
- $\rightarrow\,$ Measure of insurance provided by tax and transfer system Notice:
 - ► Focus: direct redistribution/insurance
 - T&T system that cross-sectionally redistributes endowments
 - Endogeneity of PRE to taxes not captured
 - ► Silent on government expenditures and financing

Bridging Estimated and Model Process

- ▶ Data: we have estimated $var(\eta_t^{pre})$ and $var(\eta_t^{pos})$
- Model: overall permanent shocks $\eta_t = (\eta_t^{idio} + \eta_t^{island})$
 - For given λ_{perm} : scale estimated parameters of permanent shocks s.t. $var(\eta_t^{idio}) = \lambda_{perm} var(\eta_t)$
 - Adjust means s.t. $E\left[exp\left(\eta^{island}\right)\right] = E\left[exp\left(\eta^{idio}\right)\right] = 1$
- ► Simulated income process→simulated consumption process

$$\log c_t \left(\mathbf{x}_t, y_t^{idio} \right) = y_t^{island} + \log \int \exp \left(y_t^{idio} \right) dF_{y^{idio}, t}^a$$

Outline

Introduction

Measuring the Insurance Value of Taxes and Transfers Overview of "Measurement Tool" Key Input 1: Income Process Key Input 2: Model Framework

Results: Insurance Value of Taxes and Transfers Inspecting the Channels

Summary and Conclusion

Exercise

 Take ex-ante perspective of cohort born into Swedish economy at beginning of sample period

• Get
$$var(\eta^{island}) = (1 - \lambda)var(\eta^{pre}), var(\eta^{idio}) = \lambda var(\eta^{pre})$$

- Simulate *z* shocks series, starting from η_0 (age 25)
- Get consumption from model

Consumption Paths

Consumption Paths

Exercise: find λ that makes households indifferent between:

- facing the post-gov. income cons. stream (red) with $\lambda^{post} = \mathbf{0}$ and
- facing the pre-gov. income stream (blue) with $\lambda > 0$

Consider Four Worlds

From (cyclical) pre- to (acyclical) post-government:

- 1. **Pre**-government income (**estimated**)
- 2. Post-government income (estimated)
- 3. Post-government adjusted for initial dispersion (hypothetical)
- 4. Post-gov. income adjusted and removing cyclicality

(hypothetical)

Baseline Measure (log utility, $\beta = 0.95$, survival $\delta = 0.996$)

Scenario	$\lambda_{\it perm}^{\it pre}$	CEV	λ_{perm}^{pre} (adj.)	CEV (adj.)
Pre to Post	43%	14.26%	6%	1.28%
Pre to Post*	64%	17.53%	27%	5.91%

► PRE→POST:

- Degree of partial insurance: 43%
- Implied CEV: 14.26%

Baseline Measure (log utility, $\beta = 0.95$, survival $\delta = 0.996$)

Scenario	$\lambda_{\it perm}^{\it pre}$	CEV	λ_{perm}^{pre} (adj.)	CEV (adj.)
Pre to Post	43%	14.26%	6%	1.28%
Pre to Post*	64%	17.53%	27%	5.91%

▶ $PRE \rightarrow POST$:

- Degree of partial insurance: 43%
- Implied CEV: 14.26%
- ▶ *PRE*→*POST* adjusted for init. dispersion:
 - Degree of partial insurance: 6%
 - Implied CEV: 1.28%

Baseline Measure (log utility, $\beta = 0.95$, survival $\delta = 0.996$)

Scenario	$\lambda_{\it perm}^{\it pre}$	CEV	λ_{perm}^{pre} (adj.)	CEV (adj.)
Pre to Post	43%	14.26%	6%	1.28%
Pre to Post*	64%	17.53%	27%	5.91%

▶ $PRE \rightarrow POST$:

- Degree of partial insurance: 43%
- Implied CEV: 14.26%
- ▶ *PRE*→*POST* adjusted for init. dispersion:
 - Degree of partial insurance: 6%
 - Implied CEV: 1.28%
- ▶ *PRE*→*POST* adjusted for init. dispersion + removing cyclicality:
 - Degree of partial insurance: 27%
 - ▶ Implied CEV: **5.91%** \rightarrow Sizable further gain of smoothing cycles

The Role of **Risk Attitudes**

Sconario	\ pre	CEV) pre (adi)	CEV (adi)
JUEITATIO	∧perm	OLV	Aperm (auj.)	
	log utility			
Pre to Post	43%	14.26%	6%	1.28%
Pre to Post*	64%	17.53%	27%	5.91%
		CBBAW	Rick Aversia	n — 2
	CHRAW/RISK AVEISION = 2			11 – 2
Pre to Post	36%	32.65%	5%	3.03%
Pre to Post*	66%	46.34%	34%	19.13%

- Lower smoothing but higher value with risk aversion = 2
- Notice: this is conditional on $\lambda^{post} = 0$

The Role of Additional Self-Insurance Channels

- Anchoring of model measure by fixing λ_{perm}^{post}
- ► Baseline: $\lambda_{perm}^{post} = 0$
- ► Redo for $\lambda_{perm}^{post} > 0$
 - Capture additional insurance channels
 - Resulting λ_{perm}^{pre} : insurance through government + other channel
 - Back out insurance part coming from government:

$$\lambda^{gov} = 1 - \frac{1 - \lambda_{perm}^{pre}}{1 - \lambda_{perm}^{post}} = \frac{\lambda_{perm}^{pre} - \lambda_{perm}^{post}}{1 - \lambda_{perm}^{post}}$$

The Role of Additional Self-Insurance Channels: $\lambda_{perm}^{pos} = 0.1$

Scenario	λ^{gov}	$\lambda_{\it perm}^{\it pre}$	CEV	$\lambda^{gov}(adj.)$	λ_{perm}^{pre} (adj.)	CEV (adj.)
		log utility				
Pre to Post	43%	49%	15.13%	7%	16%	3.29%
Pre to Post*	64%	68%	18.09%	28%	35%	7.53%

- the partial insurance provided by the tax and transfer system,
- additional partial insurance from other insurance channels.
- Obtained λ^{gov} basically unchanged

Role of Higher-Order Moments

Scenario	$\lambda_{\it perm}^{\it pre}$	CEV	λ_{perm}^{pre} (adj.)	CEV (adj.)
	log utility			
Pre to Post	43%	14.26%	6%	1.28%
Gaussian	43%	15.52%	7%	2.97%
Pre to Post*	64%	17.53%	27%	5.91%
	65%	20.60%	29%	11.15%

- agents exposed to Gaussian processes with same 1 and 2 mom
- variance still co-moves with the aggregate state of the economy

Role of Higher-Order Moments

Scenario	$\lambda_{\it perm}^{\it pre}$	CEV	λ_{perm}^{pre} (adj.)	CEV (adj.)
	log utility			
Pre to Post	43%	14.26%	6%	1.28%
Gaussian	43%	15.52%	7%	2.97%
Pre to Post*	64%	17.53%	27%	5.91%
	65%	20.60%	29%	11.15%

- agents exposed to Gaussian processes with same 1 and 2 mom
- variance still co-moves with the aggregate state of the economy
- similar results, with larger welfare values
 - $\rightarrow\,$ not taking into account HO moments, overestimate the insurance value of the existing tax and transfer system

Outline

Introduction

Measuring the Insurance Value of Taxes and Transfers Overview of "Measurement Tool" Key Input 1: Income Process Key Input 2: Model Framework

Results: Insurance Value of Taxes and Transfers Inspecting the Channels

Summary and Conclusion

Summary

- Post-government earnings dynamics ≠ pre-government
- Question: What is the value?
- We: construct simple model-based measure
- ▶ By-product: illustrate how to use HSV framework
- Answer:
 - 1. Sizable partial insurance
 - 2. Still potential gain of smoothing cycle!

Summary

- ▶ Post-government earnings dynamics \neq pre-government
- Question: What is the value?
- We: construct simple model-based measure
- ▶ By-product: illustrate how to use HSV framework
- Answer:
 - 1. Sizable partial insurance
 - 2. Still potential gain of smoothing cycle!
- Ongoing: apply to PSID based measures
 - Include consumption measure
 - \rightarrow Allows to estimate λ^{post}

Estimated Income Processes

$$\mathbf{y}_t = \mathbf{z}_t + \varepsilon_t \tag{4}$$

$$z_t = z_{t-1} + \eta_t$$

 $\triangleright \varepsilon_t$ follows mixture of two normals:

$$arepsilon_t \varepsilon_t \sim egin{cases} \mathcal{N}(ar{\mu}_arepsilon, \sigma_{arepsilon,1}^2) & ext{with prob. } p_{arepsilon,1} \ \mathcal{N}(ar{\mu}_arepsilon, \sigma_{arepsilon,2}^2) & ext{with prob. } 1 - p_{arepsilon,1} \end{cases}$$

• η_t follows mixture of three normals

$$\eta_t \sim \begin{cases} \mathcal{N}(\bar{\mu}_{\eta,t} + \mu_{\eta,1} + \phi_1 x_t, \sigma_{\eta,1}^2) & \text{with prob. } p_{\eta,1} \\ \mathcal{N}(\bar{\mu}_{\eta,t} + \mu_{\eta,2} + \phi_2 x_t, \sigma_{\eta,2}^2) & \text{with prob. } p_{\eta,2} \\ \mathcal{N}(\bar{\mu}_{\eta,t} + \mu_{\eta,3} + \phi_3 x_t, \sigma_{\eta,3}^2) & \text{with prob. } p_{\eta,3} \end{cases}$$

x_t: standardized log GDP growth

▶ $\bar{\mu}_{\varepsilon}$ and $\bar{\mu}_{\eta,t}$ such that $\mathbb{E}\left[\exp(\varepsilon)\right] = 1$ and $\mathbb{E}\left[\exp(\eta_t)\right] = 1$

Parameters to Estimate

Parameters:

$$\chi_{trans} = \left\{ \sigma_{\varepsilon,1}, \sigma_{\varepsilon,2}, \boldsymbol{p}_{\varepsilon,1} \right\}$$

$$\chi_{perm} = \left\{ \mu_{\eta,2}, \mu_{\eta,3}, \sigma_{\eta,1}, \sigma_{\eta,2}, \boldsymbol{p}_{\eta,1}, \boldsymbol{p}_{\eta,2}, \phi_2, \phi_3 \right\}$$
(6)

• Estimate
$$\chi = \{\chi_{trans}, \chi_{perm}\}$$
 using SMM

- Timeseries of L9050, L5010, of 1-, 3-, 5-year Δy
- Average of Crow-Siddiqui Kurtosis of 1-, 3-, 5-year Δy
- Age profile of cross-sectional variance

Back