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Abstract

In a general one-sector model of optimal stochastic growth where the pro-

ductivity of capital is bounded but may vary widely due to technology shocks,

we derive a tight estimate of the slope of the optimal policy function near zero.

We use this to derive a readily verifiable condition that ensures almost sure

global conservation of capital (i.e., avoidance of extinction) under the optimal

policy, as well as global convergence to a positive stochastic steady state for

bounded growth technology; this condition is significantly weaker than existing

conditions and explicitly depends on risk aversion. For a specific class of util-

ity and production functions, a strict violation of this condition implies that

almost sure long run extinction of capital is globally optimal. Conservation is

non-monotonic in risk aversion; conservation is likely to be optimal when the

degree of risk aversion (near zero) is either high or low, while extinction may

be optimal at intermediate levels of risk aversion.
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1 Introduction

A fundamental issue in the study of economic growth and dynamic capital accumu-

lation is whether the economy converges to a steady state characterized by positive

output and consumption in the long run; such an outcome is characterized by con-

servation of capital or avoidance of extinction where extinction refers to depletion of

capital stocks to zero in the long run. Interest in this issue is rooted in the desire to

understand and predict the qualitative nature of the so called "long run equilibrium"

of the economy.1 In the study of accumulation of natural resources and other envi-

ronmental assets that are depleted for economic use, there is an abiding interest in

understanding the economics of conservation and extinction that is partly based on

the negative environmental externalities associated with extinction.2

It is well known that even if technology and endowments in an economy make it

feasible to maintain positive consumption and output in the long run, preferences of

economic agents and their interaction can create dynamic incentives for extinction.

The optimal economic growth model provides a stylized framework to understand

the role of intertemporal preferences in determining the long run outcomes of capital

accumulation. The one sector stochastic version of this model3, where exogenous

fluctuations or technology shocks affect the return on investment over time, provides a

framework for economists to understand the economic factors that ensure convergence

to a positive stochastic steady state, i.e., an invariant distribution where consumption

and output are strictly positive with probability one; such an outcome is in sharp

contrast to almost sure extinction where economic activity pretty much ceases in the

long run.

The optimal stochastic growth model has also been used to study optimal harvest-

ing of renewable natural resources whose "natural growth" or biological reproduction

(captured by the production function) is subject to exogenous environmental shocks

affecting the ecosystem over time; here, the utility from consumption reflects the net

social or private benefit from harvesting.4 Understanding the economic and ecological

1It may also be partly motivated by a concern that a long run economic outcome with zero
consumption may be incompatible with stability of the underlying social structure.

2Such as loss of biodiversity and amenity value.
3The one sector stochastic optimal growth model was pioneered by Levhari and Srinivasan (1969),

Brock and Mirman (1972) and Mirman and Zilcha (1975); see also, Phelps (1962). The survey by
Olson and Roy (2006) contains a useful summary of the literature.

4See, Clark (2010).

1



conditions under which it is (privately or socially) optimal to conserve the resource,

i.e., avoid extinction, is helpful for public policy; for instance, the design of poli-

cies that affect the cost and revenues of harvesting privately managed resources may

gain from a nuanced understanding of how the long run outcome depends on the net

benefit (i.e., the utility) function. A tight characterization of extinction versus con-

servation for the stochastic growth model can be very useful here. It is also useful for

understanding how the choice of "social discount rate" affects long run outcomes of

publicly managed resources under uncertainty.5 Finally, for applications of the opti-

mal stochastic growth model that involve numerical simulation or computation of the

long run empirical distribution of consumption or capital (using specific functional

forms of the primitives and calibrated parameter values)6, it may be useful to know in

advance whether or not a globally stable positive invariant distribution exists; readily

verifiable conditions on exogenous elements of the model can be helpful in this regard.

Obtaining a tight condition for convergence to a positive steady state or more

generally, of conservation of capital, is somewhat challenging in the general version of

the stochastic growth model. Among other things, it requires a precise estimate of the

optimal policy function near zero in terms of exogenous elements of the model; this

has been diffi cult to obtain outside of some examples with specific functional forms

where one can explicitly solve for the optimal policy function. This paper attempts

to directly address this gap in the literature.

We consider the general one sector discounted stochastic optimal growth model

with independent and identically distributed production shocks. We allow for a fairly

general class of concave production functions that may exhibit bounded or unbounded

growth. In our framework, technology shocks can cause wide variation in the pro-

ductivity of capital; in particular, production functions may be globally unproductive

(i.e., lie below the 45-degree line) under adverse shocks; however, we assume "bounded

shocks" i.e., for any given level of capital input, variation in the realization of the

production shock cannot lead to arbitrarily small or arbitrarily large output. We

allow for a very general class of strictly concave and smooth utility functions that

5When the natural growth of the resource is stochastic, riskiness of environmental shocks and risk
aversion (embedded in the curvature of the utility from resource harvesting) are at least as important
as discounting in determining whether or not it is economically optimal to conserve the resource.
For a discussion of issues related to choice of social discount rates in environmental management in
the presence of uncertainty see, for instance, Polasky and Dampha (2021).

6See, for instance, Taylor and Uhlig (1990).
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satisfy a mild restriction on relative risk aversion near zero.

We confine attention to production technology with bounded productivity, i.e.,

the marginal productivity of capital at zero is finite for all realizations of the random

shock.7,8 In our framework with "bounded shocks", infinite productivity at zero would

essentially rule out any possibility of extinction under the optimal policy.9 As the

objective of the paper is to derive conditions that allow us to understand how economic

factors such as risk, risk preferences and discounting matter for long run extinction

and conservation of capital, it is more useful to focus on production functions with

bounded productivity. The latter is also a natural assumption in applications of the

model to optimal resource management where the production function captures the

natural growth of a resource or the biological reproduction of a specie.10

We derive an explicit estimate of the optimal propensity to invest as output tends

to zero in terms of the discount factor, the distribution of productivity and the degree

of relative risk aversion (near zero). While this estimate is derived as a lower bound

on the optimal propensity, it is the exact limit of this propensity (as output goes

to zero) as long as is bounded away from one. This explicit characterization of the

behavior of the optimal policy function near zero in a general model (i.e., without

using explicit functional forms for the production or utility functions) is the key

theoretical contribution of this paper.

We use this tight characterization of the optimal policy function near zero to derive

an explicit condition for almost sure conservation of capital under the optimal policy

so that loosely speaking, capital, output and consumption paths generated by the

optimal policy are strictly positive in the long run (regardless of initial conditions).11

7The prevalent use of production functions that satisfy the Inada condition (infinite productivity
at zero) is largely motivated by technical convenience and in the case of some examples, the ease of
obtaining explicit solutions to the dynamic optimization problem.

8Much of the existing literature on stochastic growth allows for finite productivity at zero; in
fact, linear production functions have been used widely in various macroeconomic applications of
the stochastic growth model. See, for instance, Rebelo (1991).

9For instance, Assumption 3.5 in Kamihigashi (2007) would be satisfied in that case and Theorem
3.5 in that paper would then imply global convergence to a positive stochastic steady state. See
also, Szeidl (2013).
10In this literature, the slope of the production function at zero represents the "intrinsic" growth

rate of the resource. Empirical estimates of this growth rate for various biological species are
moderate or low (see, for instance, Myers et al, 1999). Much of the bioeconomics literature assumes
that the resource growth function is logistic; this function has finite slope at zero. For an exposition
of specific models used in the literature see, Lewis (1981), Wilen (1985), Munro and Scott (1985)
and Clark (2010).
11As extinction is the event that capital stocks converge to zero, avoidance of extinction or con-
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Note that conservation is consistent with optimal paths visiting neighborhoods of

zero infinitely often as long as they rebound every time instead of tending to zero.

We demonstrate the tightness of this condition for the widely used family of constant

relative risk aversion (CRRA) utility functions and under some restrictions on the

general production function; for such economic environments, we show that a reversal

of the strict inequality in our condition for almost sure conservation implies that

(almost sure) extinction occurs globally under the optimal policy.

Using some of the seminal results on global stability due to Kamihigashi and

Stachurski (2014)12, we show that for the case of bounded growth technology, our

condition for almost sure conservation ensures the existence of a globally stable posi-

tive stochastic steady state, i.e., from every strictly positive initial stock, the optimal

output process converges in distribution to a unique invariant distribution whose

support is in the strictly positive real line.

Our condition for almost sure avoidance of extinction is the weakest in the relevant

literature and allows us to explicitly highlight the role of risk aversion. We show that

if the discount factor and the stochastic technology are such that the condition is

satisfied when the relative risk aversion at zero is 1 (for instance, in the case of

the log utility function), then it is satisfied for all admissible utility functions. If

the condition is strictly violated when the relative risk aversion at zero is 1, then

conservation is still ensured if relative risk aversion is either small enough or large

enough, but almost sure extinction may be optimal when relative risk aversion is in

an intermediate range (close to 1). This demonstrates the non-monotone effect of

increase in risk aversion on conservation and extinction (or, in the case of bounded

growth technology, extinction versus convergence to a positive steady state); increased

curvature of the utility function increases the incentive to smoothen intertemporal

consumption which makes the economy move away from extinction paths but at the

same time, higher risk aversion increases the incentive to favor certainty of current

consumption against the uncertainty of future consumption that works against the

incentive to accumulate and may push the economy towards extinction.

Our framework allows for the so called "unbounded growth" technology that re-

servation is the (complementary) event that the upper limit (limit supremum) of the sequence of
capital stocks is strictly positive.
12As a positive stochastic steady state in our model may not be bounded away from zero and

because zero is an absorbing state, the usual "mixing" or "splitting" conditions for global stability
(see, for instance, Hopenhayn and Prescott, 1992) are not very useful.

4



mains productive at all levels of investment; for such technology, it is of interest to

understand the conditions under which the optimal policy generates sustained (or

long run) growth almost surely13; our results are useful for this purpose as avoidance

of extinction is a necessary condition for unbounded expansion.

Related Literature. The early literature on optimal stochastic growth imposed

strong conditions to ensure that when current output is small, it is optimal to expand

output even under the "worst" realization of the exogenous shock; the latter implies

that with probability one, long run output and capital stocks lie above a strictly

positive lower bound.14 Brock and Mirman (1972) and Mirman and Zilcha (1975)

ensure this by assuming infinite marginal productivity at zero for every realization

of the shock and in addition, a strictly positive probability mass on the worst pro-

duction shock.15 When the utility function is bounded below, these conditions can

be weakened to a requirement that the discounted marginal productivity of capital

near zero is greater than one for every realization of the random shock (Hopenhayn

and Prescott, 1992, Chatterjee and Shukayev, 2008). Mitra and Roy (2012a,b) derive

weaker conditions for optimal paths to be bounded away from zero that, in particular,

depend on the curvature of the utility function16 and the distribution of shocks. In

contrast to this strand of the literature, our paper focuses on avoidance of extinction,

i.e., for output and capital stocks to not converge to zero, which is weaker than be-

ing bounded away from zero; while we investigate the existence of a globally stable

positive steady state whose support is in the strictly positive real line (i.e., has no

probability mass at zero), we do not require this support to be bounded away from

zero.

Over the last two decades, a growing literature on stochastic growth with "un-

bounded shocks" has extended the core model to allow for production technologies

where for any given level of capital input, variation in realizations of the exogenous

shock can lead to arbitrarily small or arbitrarily large output. In this framework,

Stachurski (2002) and Nishimura and Stachurski (2005) use innovative techniques to

13See, for instance, de Hek and Roy (2001).
14Assuming infinite productivity at zero is not, by itself, suffi cient to ensure that optimal paths are

bounded away from zero almost surely; see Mirman and Zilcha (1976) and Mitra and Roy (2012a).
15See also, Brock and Majumdar (1978), Majumdar, Mitra and Nyarko (1989) and Olson (1989).
16For an early analysis of the comparative dynamics of the curvature of the utility function, see

Danthine and Donaldson (1981). On a somewhat different note, Jones et al (2004) show that the
qualitative relationship between volatility and "mean" growth depends on the curvature of the utility
function.
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derive conditions for a globally stable positive stochastic steady state that has no

probability mass at zero; somewhat weaker conditions are contained in Zhang (2007)

for production functions that satisfy the Inada condition.17 The weakest condition for

a globally stable positive steady state in the existing literature on optimal stochastic

growth is derived by Kamihigashi (2007) in an integrated framework that allows for

both bounded and unbounded shocks as well as bounded and unbounded growth. In

all of these papers, conditions to ensure avoidance of extinction (necessary for conver-

gence to a positive steady state) do not involve the utility function or risk preference.

Though we do not allow for "unbounded shocks", the framework in our paper is closer

to the second strand of the literature as we allow capital to be globally unproductive

under adverse shocks so that long run output and capital stocks may not be bounded

away from zero even if all output is invested every period; a positive stochastic steady

state, if it exists, may not be bounded away from zero.

Our key condition for almost sure avoidance of extinction and global convergence

to a positive stochastic steady state is weaker than comparable conditions in the

existing literature (and in particular, the condition in Kamihigashi, 2007) and is

fairly tight for a widely used family of utility and production functions; this condition

involves, among other factors, the degree of risk aversion near zero.18,19 Unlike the

previous literature, our condition is based on an explicit characterization of the slope

of the optimal policy function near zero.

The literature on optimally management of renewable natural resources has also

analyzed economic and ecological conditions for conservation and extinction. Reed

(1974) provides conditions for conservation and extinction assuming that utility is

linear in consumption (harvest) which sharply limits the role of role of risk and risk

aversion in the behavior of optimal paths near zero.20 In a more general framework

17See also, See also, Nishimura et al (2006) and Szeidl (2013).
18The suffi cient conditions in Mitra and Roy (2012a,b) also involve risk aversion but they are

significantly stronger as they ensure outcomes stronger than avoidance of extinction and are not
based on any precise estimate of the optimal propensity to invest near zero. In their framework,
higher risk aversion near zero makes it less likely that optimal outputs are bounded away from zero;
this is in contrast to the non-monotonic effect of risk aversion on conservation in this paper.
19A number of papers ensure extinction and conservation (or, convergence to a positive steady

state) by imposing conditions directly on the optimal policy function or the kernel of the stochastic
process generated by the optimal policy functions. See, for instance, Boylan (1979) and Mendelssohn
and Sobel (1980). In contrast, the conditions in our paper are on the primitives or exogenous elements
of the model such as preferences and technology.
20See also, Reed (1978). For analysis of conservation and extinction using a specfic parametric

form for the production function see, Lande, Engen and Saether (1994) and Alvarez and Shepp
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that allows for non-concave production functions and nonlinear utility, Olson and Roy

(2000) and Mitra and Roy (2006) provide conditions for optimal resource stocks to

be bounded away from zero with probability one21. In the context of our model with

concave production function and utility function that depends only on consumption,

these conditions are stronger than our condition for conservation of capital.

Plan of the paper. Section 2 outlines the model and some basic results. Section

3 contains our key result characterizing the optimal propensity to invest near zero.

Section 4 outlines our condition for almost sure avoidance of extinction. Section 5

outlines an upper bound on the optimal investment policy function for a specific

family of utility and production functions and uses this to illustrate the tightness of

our condition for almost sure conservation. Section 6 discusses the effect of change

in relative risk aversion on the optimality of extinction and conservation. Section 7

considers the case of bounded growth technology and shows how our condition for

almost sure conservation ensures a globally stable positive stochastic steady state.

The Appendix contains proofs of all results.

2 Model

We consider an infinite horizon one-good representative agent economy. Let N denote
the set of natural numbers {0, 1, 2, ...} and N+ the set of strictly positive natural
numbers; let R+ and R++ denote respectively the sets of non-negative and strictly
positive real numbers. Time is discrete and is indexed by t ∈ N. The initial stock
of output y0 ∈ R+ is given. At each date t, the representative agent observes the
current stock of output yt ∈ R+ and chooses the level of current investment xt, and
the current consumption level ct, such that

ct ≥ 0, xt ≥ 0, ct + xt ≤ yt.

This generates yt+1, the output next period through the relation

yt+1 = f(xt, rt+1),

(1998).
21Olson and Roy (2000) also allow for stock-dependent utility.
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where f is the "aggregate" production function and rt+1 is a random production shock

realized at the beginning of period (t+ 1).

2.1 Production

The following assumption is made on the sequence of random shocks:

(R.1) {rt}∞t=1 is an independent and identically distributed random process de-

fined on a probability space (Ω,F , P ), where the marginal distribution function is

denoted by Ψ. The support of this distribution is a non-degenerate set A ⊂ R++.
The production function f : R+ × A → R+ is assumed to satisfy the following

standard monotonicity, concavity, measurability and smoothness restrictions on the

production function:

(T.1) Given any r ∈ A, f(x, r) is assumed to be continuously differentiable and

concave in x on R+, with f(0, r) = 0; further, f ′(x, r) = ∂f(x,r)
∂x

> 0 on R+ and

f ′(0, r) = lim
x↓0

f ′(x, r) <∞.

For any x ≥ 0, f(x, .) : A→ R+ is a (Borel) measurable function.
Note that (T.1) implies that for each realization of the random shock, marginal

productivity is bounded; we do not allow for production functions where the Inada

condition holds at zero.

For each r ∈ A, let B(r) denote the marginal product at zero investment:

B(r) = f ′(0, r).

Observe that for all x ≥ 0,

f(x, r) ≤ B(r)x. (1)

We assume that

(T.2)
B = inf

r∈A
B(r) > 0, B = sup

r∈A
B(r) <∞. (2)

Note that (T.2) allows B to be less than one, i.e., we allow for production technologies
that are unproductive at all levels of capital input.

For any investment level x ≥ 0, let the upper and lower bound of the support of
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output next period be denoted by f(x) and f(x), respectively. In particular,

f(x) = sup
r∈A

f(x, r), f(x) = inf
r∈A

f(x, r). (3)

It is easy to check that f(x) and f(x) are non-decreasing on R+, f(0) = f(0) = 0

and f(.) is concave on R+. Further, (T.1) and (T.2) imply that

0 < f(x) ≤ f(x) <∞, (4)

for all x > 0. Thus, we assume "bounded shocks".

2.2 Preferences

We denote by u the one period utility function from consumption and we assume

that:

(U.1) u : R+ → R ∪ {−∞} is twice continuously differentiable on R++, u′(c) >
0, u′′(c) < 0 for all c > 0.

(U.2) limc→0 u(c) = u(0); limc→0 u
′(c) = +∞.

Note that we allow for unbounded utility functions. For c > 0, let the Arrow-Pratt

measure of relative risk aversion at c be defined by:

ρ(c) = −u
′′(c)c

u′(c)
.

We assume that ρ(c) converges to a strictly positive number as c→ 0:

(U.3)
lim
c→0

ρ(c) = ρ0 > 0.

2.3 The Optimization Problem

Given an initial stock y ∈ R+, a stochastic process {yt, ct, xt} is feasible from y if it

satisfies y0 = y, and:

(i) ct ≥ 0, xt ≥ 0, ct + xt ≤ yt for all t ∈ N,
(ii) yt = f(xt−1, rt) for t ∈ N+,

9



and (iii) for each t ∈ N, {ct, xt} are Ft adapted where Ft is the (sub) σ-field generated
by partial history from periods 0 through t.

Let δ ∈ (0, 1) denote the time discount factor. The objective of the representa-

tive agent is to maximize the expected value of the discounted sum of utilities from

consumption:

E

[ ∞∑
t=0

δtu(ct)

]
.

Given y ≥ 0, define the stochastic process of consumption {cMt } by: cM0 = y, cMt+1 =

f(cMt , rt+1) for all t ≥ 0. Thus, cMt is an upper bound on feasible consumption in period

t. We assume that:

(D.1) For all y ≥ 0,

E

[ ∞∑
t=0

δtu(cMt )+

]
<∞,

where u(c)+ = max{u(c), 0}.
Assumption (D.1) ensures that for any feasible stochastic process {yt, ct, xt} from

y ≥ 0, the objective of the representative agent given by

E

[ ∞∑
t=0

δtu(ct)

]
,

is well defined though it may equal −∞, and that (see, Kamihigashi 2007)

E

[ ∞∑
t=0

δtu(ct)

]
=
∞∑
t=0

δtE[u(ct)]. (5)

Note that (D.1) is always satisfied if either u is bounded above or alternatively, if
limsupx→∞[f(x)/x] < 1, i.e., the technology exhibits bounded growth.

Given initial stock y ≥ 0, a feasible stochastic process {yt, ct, xt} is optimal from
y if for every feasible stochastic process {y′t, c′t, x′t} from y,

E

[ ∞∑
t=0

δtu(ct)

]
≥ E

[ ∞∑
t=0

δtu(c′t)

]
.

For y ≥ 0, let V (y), the value function be defined by
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V (y) = sup

{
E
∞∑
t=0

δtu(ct)) : {ct, xt, yt} is a feasible stochastic process from y

}
.

We assume:

(D.2) V (y) > −∞ for all y > 0.

Note that (D.2) is always satisfied if u(0) > −∞ or alternatively, if B > 1, i.e.,

the worst case production function is productive near zero; if neither of these hold, it

is satisfied under some restrictions on the discount factor δ.

Combined with assumption (D.1), we now have

−∞ < V (y) < +∞, for all y > 0.

A consumption (policy) function is a function c̃ : R+ → R+, satisfying:

0 ≤ c̃(y) ≤ y for all y ∈ R+.

Note that this implies c̃(0) = 0. Associated with a consumption function c̃(·), is an
investment (policy) function x̃ : R+ → R, defined by

x̃(y) = y − c̃(y) for all y ∈ R+.

Thus, the investment function x̃(.) satisfies:

0 ≤ x̃(y) ≤ y for all y ∈ R+.

A feasible stochastic process {yt, ct, xt} is said to be generated by a consumption
function c̃(y) from initial stock y ∈ R+ if

y0 = y; yt+1 = f(yt − c̃(yt), rt+1) for t ≥ 0;

ct = c̃(yt), xt = yt − c̃(yt) for t ≥ 0.

A consumption (policy) function c(y) is said to be optimal if for every initial stock

y ∈ R+, the stochastic process {yt, ct, xt} generated by the function c(.) is optimal;
we refer to the investment policy function x(y) = y − c(y) as the optimal investment
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function.

Standard dynamic programming arguments (see Theorem 2.1 in Kamihigashi,

2007) imply:

Lemma 1 The value function V (y) satisfies the functional equation:

V (y) = max
0≤c≤y

[u(c) + δE (V (f(y − c, r))] . (6)

V (y) is continuous, strictly increasing and strictly concave on R++. For each y ≥ 0,

the maximization problem on the right hand side of (6) has a unique solution c(y)

and the consumption (policy) function c(y) is the unique optimal consumption (policy)

function. For all y > 0, c(y) > 0 and x(y) = y−c(y) > 0. x(y) and c(y) are continuous

and strictly increasing in y on R+. For all y > 0,the following Ramsey-Euler equation

holds:

u′(c(y)) = δE[u′(c(f(x(y), r)))f ′(x(y), r)] (7)

= δ

∫
A

u′(c(f(x(y), r)))f ′(x(y), r)dΨ(r).

Let H : R+ × A→ R+ be the optimal transition function defined by:

H(y, r) = f(x(y), r).

For y ∈ R+, the optimal stochastic process of output, consumption and investment
{yt(y), ct(y), xt(y)} (generated by the optimal policy function) from initial stock y are
given by

y0(y) = y, yt+1(y) = H(yt(y), rt+1), t ∈ N.
ct(y) = c(yt(y)), xt(y) = x(yt(y)), t ∈ N.

Let H : R+ → R+ and H : R+ → R+ denote the upper and lower envelope of the
transition functions defined by:

H(y) = f(x(y)), H(y) = f(x(y)).

As f(.) is non-decreasing and x(y) is strictly increasing, H(.) is non-decreasing on

R+.
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Finally, for any feasible stochastic process of capital stocks {xt} from initial stock
y ∈ R+, we define extinction (of capital) as the event that xt converges to 0 as t→∞;
we define conservation of capital as the complementary event of extinction, viz., the

event that lim supt→∞ xt > 0. Extinction is said to occur almost surely under the

optimal policy (or, extinction is optimal with probability one) if

Pr{ lim
t→∞

xt(y) = 0} = 1,

where {xt(y)} is the optimal stochastic process of capital stocks (i.e., the process
generated by the optimal policy function) from initial stock y ∈ R+. Conservation of
capital is said to occur almost surely under the optimal policy (or, conservation is

optimal with probability one) if

Pr{lim sup t→∞xt(y) > 0} = 1.

3 Optimal Propensity to Invest

The behavior of the optimal policy function near zero is of crucial importance in

determining the likelihood of conservation of capital when the capital stock is suffi -

ciently depleted. In this section, we provide an explicit characterization of the limiting

optimal propensity to invest as output converges to zero in terms the discount factor,

the probability distribution of marginal productivity of capital and the degree of risk

aversion.

Recall that ρ(c) = −u′′(c)c
u′(c) is the Arrow-Pratt measure of relative risk aversion at

c > 0. Under assumption (U.3), ρ(c) → ρ0 > 0 as c → 0; thus ρ0 is the (limiting)

risk aversion at zero.

Also, recall that B(r) = f ′(0, r) is the marginal product at zero investment cor-

responding to realization r of the productivity shock. Under our assumptions, B(rt)

is a bounded random variable taking values in [B,B] ⊂ R++.With some abuse of
notation, we use B(r) to denote the random variable B(rt).

Define

s0 =
[
δE
{

(B(r))1−ρ0
}]1/ρ0 =

[
δ

∫
A

(B(r))1−ρ0dΨ(r)

]1/ρ0
. (8)
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Assumption (T.2) ensures that s0 is well defined and 0 < s0 < ∞.
Finally, define θ ∈ (0, 1] by

θ = min{s0, 1}. (9)

Note that θ depends only on the discount factor, the probability distribution of the

marginal productivity of capital at zero and the degree of relative risk aversion at

zero.

We are now ready to state the main result in this section that provides a tight

and explicit characterization of the behavior of the optimal policy function near zero.

Proposition 1 (i)

lim inf y→0

[
x(y)

y

]
≥ θ = min {s0, 1} . (10)

(ii) If

lim sup y→0

[
x(y)

y

]
< 1,

i.e., the optimal propensity to invest x(y)
y
is bounded away from 1 as y → 0, then

s0 < 1 and

lim
y→0

x(y)

y
= s0 = θ.

Part (i) of Proposition 1 provides an explicit lower bound θ for the optimal propen-

sity to invest as output converges to zero; loosely speaking, optimal investment is

bounded below by θy for y small enough. This lower bound does not require the

production function or the utility function to have any specific functional form. Our

subsequent analysis of conservation of capital will use this lower bound. Note that

(10) implies that if s0 ≥ 1, then x(y)
y
→ 1 as y → 0.

Part (ii) of the proposition indicates that the lower bound θ is "tight" in the

sense that it is the exact limit of the optimal propensity to invest as output converges

to zero (loosely, the slope of the policy function at zero) if the optimal propensity

to invest is bounded away from 1, i.e., if the optimal propensity to consume c(y)
y
is

bounded away from zero; in the latter case, the optimal investment function behaves

pretty much like the linear function θy for output levels close to zero.22

22It is worth noting that if the production function is linear i.e., f(x, r) = rx, the utility function
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4 Conservation of Capital

In this section, we outline our main result on conservation of capital. In particular,

we use the bound on the optimal propensity to invest near zero characterized in

Proposition 1 to derive an explicit condition on the economic fundamentals under

which the optimal policy is such that capital stocks are strictly positive in the long

run with probability one.

(T.3)
f(x, r)

x
→ B(r) as x→ 0 uniformly in r on A.

Note that (T.3) is satisfied if the random shock is multiplicative (for instance, f(x, r) =

rh(x)) and A, the support of the distribution of random shocks, is a bounded subset

of R++.
Our condition for almost sure conservation of capital is as follows:

Condition C:
E[ln (θB(r))] > 0. (C)

Note that θ and therefore, ConditionC, depends on the discount factor, the degree
of risk aversion, the distribution of random shocks and the marginal productivity of

capital. In particular, if θ < 1 so that θ = s0 = (δE((B(r))1−ρ0)
1/ρ0 , Condition C is

equivalent to:

(1/ρ0)
[
ln δ + lnE

(
(B(r))1−ρ0

)]
+ E ln(B(r)) > 0, (11)

which can be written as

E[ln(δB(r))] +
[{

lnE
(
(B(r))1−ρ0

)}
−
{
E ln(B(r)1−ρ0)

}]
> 0. (12)

Using Jensen’s inequality, the second term in square brackets on the left hand side of

inequality (12) reflects the interaction between risk aversion (near zero) and riskiness

of the productivity shock; it is always non-negative and it is strictly positive if ρ0 6=
1.23Note that in the deterministic case, the second expression in square brackets on

exhibits constant relative risk aversion and θ < 1, then the optimal investment policy function is
given by x(y) = θy i.e., θ is the optimal propensity to invest at all levels of output. See, for instance,
de Hek and Roy (2001).
23As the log function is concave, Jensen’s Inequality ensures that lnE(Y ) ≥ E(lnY ) where Y =

B(rt)
1−ρ0 is a positive valued random variable with finite expectation. Note that the curvature of
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the left hand side of inequality (12) is zero and ConditionC reduces to the well known
"delta-productivity" condition that requires the discounted marginal productivity at

zero to be larger than one.

We are now ready to state the main result of this section.

Proposition 2 Assume (T.3) and Condition C. Then the following hold for all ini-
tial stocks y ∈ R++:

(i) For any ξ > 0, there exists α̂(y) > 0 such that

Pr{yt(y) < α̂(y)} < ξ for all t ∈ N. (13)

(ii) Conservation of capital occurs with probability one under the optimal policy,

i.e.,

Pr{lim sup t→∞xt(y) > 0} = 1. (14)

Further, lim sup t→∞yt(y) > 0 and lim sup t→∞ct(y) > 0 with probability one, i.e.,

under the optimal policy, output and consumption levels remain strictly positive in

the long run with probability one.

(iii) Extinction of capital occurs with zero probability under the optimal policy,

i.e.,

Pr{xt(y)→ 0} = 0.

Proposition 2 shows that Condition C ensures the following. Part (i) of the

proposition states that though output (and therefore consumption and capital) may

reach arbitrarily small levels from time to time, it is (loosely speaking) bounded

away "in probability" from zero. This implication of Condition C is used in the

proof of parts (ii) and (iii) of the proposition and plays a critical role in the proof

of Proposition 7 in section 7, i.e., in establishing the existence of a globally stable

positive stochastic steady state. Parts (ii) and (iii) of the proposition state that

under the optimal policy, long run capital and consumption are strictly positive with

probability one and extinction occurs with probability zero from any strictly positive

initial stock.

the function B(r) does not matter for this comparison.
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5 Tightness of Condition C

In this section, we illustrate the tightness of our general condition (Condition C) for
almost sure conservation of capital. We show that for a class of utility and production

functions that are widely used in the literature, strong violation of Condition C (in

the sense of reversal of the strict inequality in Condition C) implies that all optimal
paths converge to zero, i.e., extinction occurs with probability one from all positive

initial stocks. This result is stated as Proposition 4 in subsection 5.2.

The restricted family of utility and production functions that we consider in this

section are as follows. First, we confine attention to utility functions that satisfy

constant relative risk aversion, i.e., we assume that:

(U.4)

u(c) =
c1−ρ0

1− ρ0
, ρ0 > 0, ρ0 6= 1,

= ln c (corresponding to ρ0 = 1).

Second, we impose the following joint restriction on the set of admissible production

and utility functions:

Condition B: For all r ∈ A, x ∈ R++,

f ′(x, r)xρ0

(f(x, r))ρ0
≤ (B(r))1−ρ0 . (B)

Note that

lim
x→0

{
f ′(x, r)xρ0

(f(x, r))ρ0

}
= (B(r))1−ρ0 ,

so that Condition B essentially requires that the function f ′(x,r)xρ0

(f(x,r))ρ0
is "maximized

at zero". If f is twice differentiable and η1(x, r), η2(x, r) are the first and second

elasticities of the production function defined by

η1(x, r) =
f ′(x, r)x

f(x, r)
, η2(x, r) = −f

′′(x, r)x

f ′(x, r)
,

then Condition B holds if

ρ0 ≤
η2(x, r)

1− η1(x, r)
,∀x ∈ R++, r ∈ A.
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This last condition ensures that ln
(
f ′(x,r)xρ0

(f(x,r))ρ0

)
has a non-positive derivative at every

x > 0 and is therefore "maximized at x = 0".

The required inequality in (B) can be rewritten as:(
f ′(x, r)

f ′(0, r)

)1−ρ0 [f ′(x, r)x
f(x, r)

]ρ0
≤ 1, for all x ∈ R++, r ∈ A,

which always holds if ρ0 ∈ (0, 1] but can also hold if ρ0 > 1.

Example 1 Consider the family of production functions:

f(x, r) = 0, if x = 0,

= r(x1−η + β)
1

1−η , β ≥ 0, η > 1, if x > 0.

Note that f(x, r) satisfies assumptions (T.1)-(T.3). If β > 0, f exhibits bounded

growth and Condition B is satisfied as long as ρ0 ≤ η.24 If β = 0, f is a linear

production function and Condition B holds for all ρ0 > 0.

In section 3, we have shown that θ is always a lower bound on the optimal propen-

sity to invest near zero. We now show that for the family of utility and production

functions outlined above, θ is also an upper bound on the optimal propensity to invest

at all levels of output, i.e., we have an upper bound on the entire optimal investment

function. This is an important step towards showing that optimal paths may converge

to zero when Condition C does not hold. It can be a useful result for other purposes.

Proposition 3 Assume (U.4) and Condition B. Then, the optimal propensity to

invest is bounded above by θ on R++,i.e.,

x(y)

y
≤ θ for all y ∈ R++. (15)

If θ = 1, Proposition 3 is trivial. So, we focus on θ < 1 in which case θ = s0. The

proof first shows that θ is an upper bound on the optimal propensity to invest in the

finite horizon version of the infinite horizon dynamic optimization problem in section

2 and then uses policy convergence to extend this to the optimal policy function for

24If ρ0 = η, the optimal policy function is linear and the optimal propensity to invest is θ; see,
among others, Benhabib and Rustichini (1994), Mitra and Sorger (2014).
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the infinite horizon problem. Using Proposition 3, we establish the main result of this

section:

Proposition 4 Assume (U.4) and Condition B. If

E[ln (θB(r))] < 0, (16)

then almost sure extinction is optimal from all initial stocks, i.e., for all y ∈ R+,

{yt(y), ct(y), xt(y)} → 0 with probability one.

Note that the strict inequality in (16) is a reversal of the strict inequality in

Condition C; Proposition 4 implies that for the specific class of utility and produc-
tion functions considered in this section, a strong violation of Condition C leads to

global extinction of capital with probability one which is indicative of the tightness

of Condition C as a suffi cient condition for almost sure conservation25.

In a more general framework, Kamihigashi (2006) shows that under bounded

productivity, all feasible paths may converge to zero almost surely if the production

shocks are suffi ciently volatile; in particular, Theorem 3.1 in that paper indicates that

almost sure extinction occurs if E[lnB(r)] < 0 which is significantly stronger than

(16).

6 Risk Aversion and Regeneration

Condition C outlined in Proposition 2 allows us to study the effect of change in risk

aversion (near zero) on the optimality of conservation of capital (i.e., avoidance of

extinction) and positive long run consumption.

We begin by showing that if ConditionC is satisfied when ρ0, the (limiting) Arrow-
Pratt relative risk aversion at zero consumption, is equal to 1 (such as in the case of

the log utility function), then it is satisfied for all admissible utility functions; in this

case, change in risk aversion does not affect the optimality of conservation. Note that

at ρ0 = 1, θ = s0 = δ so that Condition C is equivalent to requiring E[ln(δB(r))] > 0.

25If E[ln θB(r)] = 0 we have the borderline case between Condition C and (16). Here, depending
on the specific production function and distribution of shocks, the optimal policy may lead to
conservation or extinction.
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Proposition 5 Assume (T.3). Suppose that

E[ln(δB(r))] > 0. (17)

Then regardless of the degree of risk aversion, i.e., for all ρ0 > 0, it is optimal to

conserve capital with probability one and in particular, the conclusions of Proposition

2 always hold.

It is worth noting that (17) is the condition imposed in Kamihigashi (2007) to

ensure avoidance of extinction and convergence to a positive steady state; in fact, it

is the weakest such condition in the existing literature. Condition C is weaker than

(17) and they coincide only if ρ0 = 1.

Next, we consider the situation where Condition C is not satisfied when the risk

aversion parameter ρ0 = 1 and in particular, E[ln(δB(r))] < 0. Here, change in risk

aversion can alter the desirability of conservation. In particular, we show that in

certain situations, almost sure conservation may be optimal when the degree of risk

aversion is either low or high, but almost sure extinction may be optimal when risk

aversion is at an intermediate level.

Proposition 6 Assume (T.3). Suppose that

E[ln(δB(r))] < 0 < E[lnB(r)].

Then the following hold:

(a) If ρ0 is close to 1, then for utility and production functions that satisfy (U.4)and

Condition B, extinction with probability one is optimal from all initial stocks.

(b) There exists ρ > 1 such that for all ρ0 > ρ, almost sure conservation is optimal

from all strictly positive initial stocks and in particular, the conclusions of Proposition

2 hold.

(c) If, further, δE (B(r)) > 1, there exists ρ ∈ (0, 1) such that for all ρ0 ∈ (0, ρ),

almost sure conservation is optimal from all strictly positive initial stocks and in

particular, the conclusions of Proposition 2 hold.

Proposition 6 indicates that the qualitative relationship between conservation and

risk aversion can be non-monotonic; as risk aversion (near zero) increases we may move

from conservation to extinction to conservation. Note that the range of values of the
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relative risk aversion parameter that is most likely to be associated with extinction

is in the neighborhood of 1 which overlaps with what is often regarded as the em-

pirically relevant range of this parameter for the purpose of quantitative analysis in

macroeconomics.

Example 2 Assume that the utility function satisfies constant relative risk aversion,
i.e., (U.4) holds. Consider the linear production function:

f(x, r) = rx.

Then, B(r) = r. Using (11), Condition C can be written as:

φ(ρ0) = ρ0E(ln r) + ln δ + lnE[r1−ρ0 ] > 0.

For the chosen utility and production functions, Condition B is satisfied for all values

of ρ0 > 0. Thus, conservation of capital occurs with probability 1 if φ(ρ0) > 0, while

extinction occurs with probability one if φ(ρ0) < 0. Assume that the random shock rt
is distributed uniformly on the interval [0.1, 2.5]. Then, E(rt) = 1.3 so that δE(rt) > 1

for δ > 0.77. Further,

E ln r =
2.5(ln 2.5)− 0.1(ln 0.1)

2.4
− 1 > 0

and

E[r1−ρ0 ] =
(2.5)(2−ρ0) − (0.1)(2−ρ0)

2.4(2− ρ0)
, if ρ0 6= 2,

=
ln 2.5− ln 0.1

2.4
, if ρ0 = 2.

We plot the function φ(ρ0) for δ = 0.9 and δ = 0.8 in Figures 1 and 2.
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Figure 1. y = φ(ρ0), x = ρ0, δ = 0.9.
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Figure 2. x = ρ0, y = φ(ρ0), δ = 0.8

Figure 1 shows that when δ = 0.9, φ(ρ0) < 0 if, and only if, the relative risk

aversion parameter ρ0 lies in an intermediate range (roughly, from 0.5 to 1.42) and it

is only for this range of risk aversion that almost sure extinction is globally optimal;

φ(ρ0) > 0, i.e., Condition C holds and almost sure conservation of capital is optimal

when ρ0 is outside this range. Figure 2 shows that the intermediate range of risk

aversion parameter for which extinction is optimal is larger (roughly, from 0.1 to

1.71) if δ = 0.8
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7 Globally Stable Positive Steady State

Our condition for conservation (Condition C) ensures that with probability one, op-
timal paths do not converge to zero and optimal outputs are strictly positive in the

long run with probability one. This indicates that if the stochastic process of optimal

output from any strictly positive initial stock converges in distribution to an invariant

distribution, then the support of the limit distribution is in R++ (it cannot assign
strictly positive probability to zero); such an invariant distribution would be the sto-

chastic analogue of a non-zero steady state in the deterministic growth model and we

can refer to it as a positive stochastic steady state. Under the convex structure of

our model, one may expect the steady state to be globally stable.

As mentioned in the introduction, the existing literature has identified conditions

that ensure a globally stable positive stochastic steady state. Our condition for con-

servation and Proposition 2 can be used to weaken these conditions.

In particular, assume that the production function satisfies:

(T.4)

lim
x→∞

sup

[
f(x)

x

]
< 1.

Define the maximum sustainable stock K ≥ 0 as

K = sup
{
x ≥ 0 : f(x) ≥ x

}
. (18)

Assumption (T.4) ensures that K <∞.
For technical convenience we also assume that:

(T.5) f and f are continuous and strictly increasing on R+. For every x >

0, f(x) < f(x) and for any υ > 1,

Pr{f(x, rt) ≤ υf(x)} > 0,Pr{f(x, rt) ≥
1

υ
f(x)} > 0.

Assumption (T.5) ensures that the distribution of output from any current in-

vestment is non-degenerate and that [f(x), f(x)] is the (essential) support of this

distribution. Note that continuity of f assumed in (T.5) implies that f(K) = K.

We are now ready to state the result on global stability of a positive steady state:

Proposition 7 Assume (T.3), (T.4), (T.5)and Condition C. Then, there exists a
globally stable invariant distribution for the stochastic process of optimal outputs
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{yt(y)} that assigns probability one to (0, K]. For any initial output y ∈ (0, K],

optimal outputs converge in distribution to this positive stochastic steady state.

The proof of Proposition 7 is entirely based on some recent results on global

stability of monotone stochastic processes by Kamihigashi and Stachurski (2014).

Condition C is the important condition in Proposition 7; it ensures that even though
outputs may reach levels arbitrarily close to zero with high probability, the stochastic

kernel of the output process is "bounded in probability" on (0, K] in the precise sense

of Proposition 2(i).

It should be noted that it is possible to replace (T.5) by alternative assumptions
that may have weaker requirements in some respects; we choose (T.5) for ease of
exposition.

One implication of Proposition 7 is that it brings out the important role of risk

aversion in convergence to a positive steady state. In particular, Propositions 6 and 7

together indicate that for a bounded growth technology, Condition C and therefore,

global convergence to a positive stochastic steady state is generally ensured if the

degree of relative risk aversion near zero is either suffi ciently high or suffi ciently low,

but if the degree of risk aversion is in an intermediate range, there may be no positive

stochastic steady state and the degenerate distribution that puts all probability mass

at zero may be the globally stable stochastic steady state.

APPENDIX

A.1 Proof of Proposition 1
We begin by stating a useful result reported in Mitra and Roy (2012a, Lemma 4):

Lemma 2 (Mitra and Roy, 2012a) For any c1 > 0, c2 > 0, c2 ≥ c1, if ρ(c) ∈ [ρ, ρ] ⊂
R++ for all c ∈ [c1, c2], then(

c2

c1

)−ρ
≤ u′(c2)

u′(c1)
≤
(
c2

c1

)−ρ
. (19)

Next, we establish some bounds on the limiting behavior of the propensity to con-

sume as output tends to zero. The following lemma shows that the optimal propen-

sity to consume is bounded away from one (i.e., the optimal propensity to invest is

bounded away from zero); assumption (U.3) which ensures that relative risk aversion
is bounded away from zero plays an important role in this result.
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Lemma 3
lim sup y→0

c(y)

y
< 1. (20)

Proof. Suppose to the contrary that lim supy→0

[
c(y)
y

]
= 1. Fix γ ∈ (0, 1).There

exists ỹ > 0 such that

ρ(c) ≥ γρ0 for all c ∈ (0, f(ỹ)]. (21)

As B <∞, there exists η0 ∈ (0, 1) such that

B(1− η) < 1 for all η ∈ (η0, 1).

Fix η ∈ (η0, 1). Then, f((1−η)y) ≤ B(1−η)y < y for all y ∈ (0, ỹ].As lim supy→0

[
c(y)
y

]
=

1, there exists a sequence {yn} converging to zero, yn ∈ (0, ỹ) for all n such that

c(yn)

yn
≥ η for all n. (22)

Then, f(x(yn), r) ≤ f(x(yn)) ≤ f((1 − η)yn) < yn for all r ∈ A. From the Ramsey-

Euler equation (7):

1

δ
= E

[
u′(c(f(x(yn), r)))

u′(c(yn))
f ′(x(yn), r)

]
≥ E

[(
c(f(x(yn), r))

c(yn)

)−γρ0
f ′(x(yn), r)

]
(using Lemma 2 and (21))

= E

[(
c(f(x(yn), r))

f(x(yn), r)

)−γρ0 (f(x(yn), r)

x(yn)

)−γρ0
f ′(x(yn), r))

](
c(yn)
yn

1− c(yn)
yn

)γρ0

≥ E

[(
f(x(yn), r)

x(yn)

)−γρ0
f ′(x(yn), r))

](
η

1− η

)γρ0
(using (22)).

Taking the liminf as n→∞ through the above inequalities and using Fatou’s Lemma

(see, for instance, section 4.3.3 in Dudley, 2002) we have

1

δ
≥ E

[
lim inf n→∞

(
f(x(yn), r)

x(yn)

)−γρ0
f ′(x(yn), r)

](
η

1− η

)γρ0
= E

[
(B(r))1−γρ0

]( η

1− η

)γρ0
,
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so that we have

η

1− η ≤
(

1

δE [(B(r))1−γρ0 ]

) 1
γρ0

for all η ∈ (η0, 1).

As ρ0 > 0 and the right hand side of the above inequality is independent of η, we

have a contradiction for η close enough to 1.

The next lemma establishes an upper bound on the limiting optimal propensity

to consume at zero under the assumption that it is strictly positive.

Lemma 4 Suppose that

lim sup y→0
c(y)

y
> 0.

Then, s0 < 1 and

lim sup y→0
c(y)

y
≤ 1− s0.

Proof. Let z = lim supy→0
c(y)
y
. Under the hypothesis of this lemma and using Lemma

3, 0 < z < 1. We will now show that

z ≤ 1− s0. (23)

Fix λ ∈ (0, 1) and M̂ > 0 such that M̂ < z
(1−z)B . There exists h ∈ (0,min{z, 1− z})

such that

M̂ ≤ (z − h)

(1− (z − h))B
for all h ∈ (0, h). (24)

Choose any ε, h such that 0 < ε < ρ0, h ∈ (0, h). There exists y > 0 such that

ρ0 − ε ≤ ρ(c) ≤ ρ0 + ε for all c ∈ (0, f(y)), (25)

and

f ′(y, r) ≥ λB for all r ∈ A. (26)

By definition of z there exists a sequence {zn}∞n=1, zn ∈ (0, y) for all n, zn → 0 as

n→∞,{ c(z
n)

zn
} is convergent and

z + h ≥ c(zn)

zn
≥ z − h for all n. (27)
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Note that limn→∞

(
c(zn)
zn

)
∈ [z−h, z]. From the Ramsey-Euler equation (7) and using

Lemma 2 and (25), we have:

1

δ
= E

[
u′(c(f(x(zn), r)))

u′(c(zn))
f ′(x(zn), r)

]
≥ E

[(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
f ′(x(zn), r)I[f(x(zn),r)≥zn]

]

+E

[(
c(f(x(zn), r))

c(zn)

)−(ρ0−ε)
f ′(x(zn), r)I[f(x(zn),r)<zn]

]
. (28)

Observe that if f(x(zn), r) ≥ zn, then(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
=

(
x(zn)

c(zn)

)−(ρ0+ε)(c(f(x(zn), r))

f(x(zn), r)

)−(ρ0+ε)(f(x(zn), r)

x(zn)

)−(ρ0+ε)
≥

(
x(zn)

c(zn)

)−ρ0 (c(f(x(zn), r))

f(x(zn), r)

)−ρ0 (f(x(zn), r)

x(zn)

)−ρ0 (1− (z − h)

(z − h)
B

)−ε
(using (27))

≥
(
x(zn)

c(zn)

)−ρ0 (c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
(M̂)ε (using (24)).

This implies that

E

[(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
f ′(x(zn), r)I[f(x(zn),r)≥zn]

]

≥
(
M̂
)ε(x(zn)

c(zn)

)−ρ0
•

E

((
c(f(x(yn), r))

f(x(yn), r)

f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)I[f(x(zn),r)≥zn]

)
. (29)

If f(x(zn), r) < zn, then(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
≥
(
c(f(x(zn), r))

c(zn)

)−ρ0
=

(
x(zn)

c(zn)

)−ρ0 (c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
.
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This implies that

E

[(
c(f(x(zn), r))

c(zn)

)−(ρ0+ε)
f ′(x(zn), r)I[f(x(zn),r)<zn]

]

≥ E

[(
c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)I[f(x(zn),r)<zn]

](
x(zn)

c(zn)

)−ρ0
.(30)

Using (28), (29) and (30), we have

1

δ
≥
(
x(zn)

c(zn)

)−ρ0
E

[(
c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)

]
min

{
M̂ ε, 1

}
,

(31)

which implies:(
c(zn)

zn

)−ρ0 (x(zn)

zn

)ρ0
≥ δE

[(
c(f(x(zn), r))

f(x(zn), r)

)−ρ0 (f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)

]
•

min
{
M̂ ε, 1

}
. (32)

For each r ∈ A,

lim inf n→∞

[(
c(f(x(zn), r))

f(x(zn), r)

)−ρ0 (f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r)

]
≥ z−ρ0(B(r))1−ρ0 .

(33)

Taking the liminf as n→∞ on both sides of (32) and using Fatou’s lemma:

lim inf n→∞

(
c(zn)

zn

)−ρ0 (x(zn)

zn

)ρ0
≥

δE

[
lim inf n→∞

(
c(f(x(zn), r))

f(x(zn), r)

f(x(zn), r)

x(zn)

)−ρ0
f ′(x(zn), r))

]
min

{
M̂ ε, 1

}
.(34)

Using (27),(33) and (34), we have(
z − h

1− (z − h)

)−ρ0
≥ z−ρ0δE

[
(B(r))1−ρ0

]
min

{
M̂ ε, 1

}
.
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As h, ε are arbitrary (and M̂ is independent of h, ε), we have(
z

1− z

)−ρ0
≥ z−ρ0δE

[
(B(r))1−ρ0

]
,

so that

(1− z)ρ0 ≥ δE
[
(B(r))1−ρ0

]
= (s0)

ρ0 (35)

This establishes (23) and also implies that s0 < 1. The proof is complete.

The next result is a corollary of the previous lemma:

Corollary 1
c(y)

y
→ 0, if s0 ≥ 1, (36)

and

lim sup y→0
c(y)

y
≤ 1− s0, if s0 < 1. (37)

Proof. If s0 ≥ 1 and lim sup y→0
c(y)
y

> 0, we have an immediate contradiction

to Lemma 4; this establishes (36). If s0 < 1 and lim sup y→0
c(y)
y

= 0, (37) holds

immediately; if lim sup y→0
c(y)
y
> 0, (37) follows from Lemma 4.

The expression for s0 = [δE {(B(r))1−ρ0}]1/ρ0 is always strictly positive but can be
arbitrarily large. The first part of Corollary 1 describes what happens when s0 ≥ 1 (so

that θ = 1) and shows that in that case, the optimal investment propensity converges

to 1 (i.e., to θ).

The next lemma indicates that the upper bound on the limiting optimal propensity

to consume at zero outlined in inequality (37) of Corollary 1 is the exact limit as long

as the optimal consumption propensity is bounded away from zero.

Lemma 5 Suppose that

lim inf y→0

[
c(y)

y

]
> 0. (38)

Then

lim
y→0

[
c(y)

y

]
= 1− s0. (39)

Proof. Let
z = lim inf y→0

c(y)

y
, z = lim sup y→0

c(y)

y
.
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Using Lemma 3 and (38),

0 < z ≤ z < 1. (40)

Further, from Lemma 4, s0 < 1 and z ≤ 1− s0. We will show that if (38) holds, then

z ≥ 1− s0, (41)

so that (using (40)), z = z = 1 − s0 and (39) holds. Fix ĥ ∈ (0,min{z, 1 − z}) and
λ ∈ (0, 1). Choose any ε, h such that 0 < ε < ρ0, h ∈ (0, ĥ).There exists ŷ > 0 such

that

ρ0 − ε ≤ ρ(c) ≤ ρ0 + ε for all c ∈ (0, f(ŷ)), (42)

and

f ′(y, r) ≥ λB for all y ∈ (0, ŷ). (43)

By definition of z and without loss of generality, there exists a sequence {yn}∞n=1, such
that yn ∈ (0, ŷ) for all n, yn → 0 as n→∞, { c(y

n)
yn
} is convergent and for all n

z + h ≥ c(yn)

yn
≥ z − h for all n, (44)

which also implies

1− z − h ≤ x(yn)

yn
≤ 1− z + h for all n. (45)

Note that ĥ ∈ (0,min{z, 1− z}) and h ∈ (0, ĥ) implies that the right hand expression

of the second inequality in (44) and the left hand expression of the first inequality in

(45) are strictly positive. Then, for ρ > 0(
z + h

1− (z + h)

)−ρ
≤
(
c(yn)

yn

)−ρ(
x(yn)

yn

)ρ
≤
(

z − h
1− (z − h)

)−ρ
. (46)

Let M0,M1 be as follows

M0 =
(z + ĥ)

(1− (z + ĥ))(z − ĥ)λB
, (47)
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M1 =
[1− (z − ĥ)]B

(z − ĥ)
. (48)

ĥ ∈ (0,min{z, 1− z}) and (40) implies that 0 < M0 <∞ and 0 < M1 <∞. Further,

(z + h)

(z − h)(1− (z + h))λB
≤M0 for all h ∈ (0, ĥ), (49)

and
[1− (z − h)]B

(z − h)
≤M1 for all h ∈ (0, ĥ). (50)

From the Ramsey-Euler equation (7) we have for each n:

1

δ
= E

[
u′(c(f(x(yn), r)))

u′(c(yn))
f ′(x(yn), r)

]
≤ E

[(
c(f(x(yn), r))

c(yn)

)−(ρ0−ε)
f ′(x(yn), r)I[f(x(yn),r)≥yn]

]

+E

[(
c(f(x(yn), r))

c(yn)

)−(ρ0+ε)
f ′(x(yn), r)I[f(x(yn),r)<yn]

]
, (51)

where the inequality follows from Lemma 2 and (42). Observe that if f(x(yn), r) ≥ yn(
c(f(x(yn), r))

c(yn)

)−(ρ0−ε)
=

(
x(yn)

c(yn)

)−ρ0 (c(f(x(yn), r))

f(x(yn), r)

f(x(yn), r)

x(yn)

)−ρ0
•
(
{x(yn)/yn}
{c(yn)/yn}

)ε(
c(f(x(yn), r))

f(x(yn), r)

f(x(yn), r)

x(yn)

)ε
≤

(
x(yn)

c(yn)

)−ρ0 (c(f(x(yn), r))

f(x(yn), r)

f(x(yn), r)

x(yn)

)−ρ0 (1− (z − h)

(z − h)

)ε
B
ε

≤
(
x(yn)

c(yn)

)−ρ0 (c(f(x(yn), r))

f(x(yn), r)

f(x(yn), r)

x(yn)

)−ρ0
M1

ε,
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where the last two inequalities follow from (44), (45) and (50); thus,

E

[(
c(f(x(yn), r))

c(yn)

)−(ρ0−ε)
f ′(x(yn), r)I[f(x(yn),r)≥yn]

]
≤
(
x(yn)

c(yn)

)−ρ0
•

E

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0
I[f(x(yn),r)≥yn]

]
M1

ε. (52)

On the other hand, if f(x(yn), r) < yn,(
c(f(x(yn), r))

c(yn)

)−(ρ0+ε)
=

(
x(yn)

c(yn)

)−(ρ0+ε)(c(f(x(yn), r))

f(x(yn), r)

)−(ρ0+ε)(f(x(yn), r)

x(yn)

)−(ρ0+ε)
≤

(
x(yn)

c(yn)

)−ρ0 (1− (z + h)

z + h

)−ε(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0
(z − h)−ε

(
f(x(yn), r)

x(yn)

)−ρ0
(λB)−ε

=

(
x(yn)

c(yn)

)−ρ0 (c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)−ρ0 ((1− z − h)(z − h)

z + h
λB

)−ε
≤

(
x(yn)

c(yn)

)−ρ0 (c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)−ρ0
M ε
0,

where the first inequality follows from (43),(44) and (45) and the second inequality

uses (49). Thus,

E

[(
c(f(x(yn), r))

c(yn)

)−(ρ0+ε)
f ′(x(yn), r)I[f(x(yn),r)<yn]

]
≤

(
x(yn)

c(yn)

)−ρ0
E

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0
I[f(x(yn),r)<yn]

]
M ε
0,

and combining this with (51) and (52), we have

1

δ
≤
(
x(yn)

c(yn)

)−ρ0
E

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0]
max{M ε

0,M
ε
1},
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so that using (46) we have(
z + h

1− (z + h)

)−ρ0
≤
(
x(yn)

c(yn)

)ρ0
≤

δE

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0]
max{M ε

0,M
ε
1}. (53)

For each r ∈ A,

lim sup n→∞

[(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0]
≤ z−ρ0(B(r))1−ρ0 . (54)

Note that { c(f(x(y
n),r))

f(x(yn),r)
} is bounded away from zero so that

(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0
is uniformly bounded above by an integrable function; taking the limsup as n → ∞
on both sides of (53):(

z + h

1− (z + h)

)−ρ0
≤ δE

[
lim sup n→∞

(
c(f(x(yn), r))

f(x(yn), r)

)−ρ0 (f(x(yn), r)

x(yn)

)1−ρ0]
max{M ε

0,M
ε
1},

(see, for instance, Royden, 1988: Problem 12, Chapter 4), and using (54) we have(
z + h

1− (z + h)

)−ρ0
≤ z−ρ0δE

[
(B(r))1−ρ0

]
max{M ε

0,M
ε
1}.

As this inequality is shown to hold for all h ∈ (0, ĥ) and all ε ∈ (0, ρ0) and as M0,M1

are independent of ε, h, we have(
z

1− z

)−ρ0
≤ z−ρ0δE

[
(B(r))1−ρ0

]
,

so that

(1− z)ρ0 ≤ δE
[
(B(r))1−ρ0

]
= (s0)

ρ0 ,
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which yields (41). This completes the proof the lemma.

Proof of Proposition 1:
Part (i) of the proposition follows from Corollary 1; in particular, (37) implies

that if s0 < 1, lim infy→0

(
x(y)
y

)
≥ s0 = θ. On the other hand, s0 ≥ 1 implies θ = 1

and using (36), we have x(y)
y
→ 1 = θ as y → 0. This establishes (10). Part (ii) of the

proposition follows directly from Lemma 5.

A.2. Proof of Proposition 2
(i) Note that 0 < θ ≤ 1. Condition C implies that E[lnB(r)] > 0. Also observe

that as x(y) > 0 for all y > 0, using (4) we have H(y) = f(x(y)) > 0 for all y > 0.

We begin by showing that the following holds:

∃ σ̃ > 0 such that for every y > 0, M(y) = sup
t
E

{(
1

yt(y)

)σ̃}
<∞. (55)

From Hardy et al (1952, pp. 139, Result 187) or alternatively, Lemma B.1 in Kami-

higashi (2007, pp. 494):

lim
σ↓0

ln

[
E

(
1

θB(r)

)σ] 1σ
= E ln

(
1

θB(r)

)
.

Using Condition C, E ln
(

1
θB(r)

)
= −E ln θB(r) < 0 and so there exists σ̃ > 0 such

that

ln

[
E

{(
1

θB(r)

)σ̃}] 1
σ̃

< 0,

i.e.,

E

{(
1

θB(r)

)σ̃}
< 1. (56)

We now show that the sequence
{
E
(

1
yt(y)

)σ̃}∞
t=0

is bounded above. Note that yt(y)

is bounded below and above by H t(y) > 0 and f
t
(y) <∞ so that 0 < E

(
1

yt(y)

)σ̃
<∞

for every t. Using (56), there exists ε > 0 small enough so that

λ = E

(
1

(1− ε)B(r)θ

)σ̃
∈ (0, 1). (57)
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Using assumption (T.3) and (10), there exists a > 0 such that for all z ∈ (0, a),

r ∈ A,
H(z, r)

z
=
f(x(z), r)

x(z)

x(z)

z
≥ (1− ε)B(r)θ.

Let

m =

(
1

H(a)

)σ̃
.

Then, m <∞. Note λ,m do not depend on t or the initial stock y. Then,(
1

yt+1(y)

)σ̃
=

(
1

H(yt(y), rt+1)

)σ̃
=

(
1

H(yt(y), rt+1)

)σ̃
I{yt(y)<a} +

(
1

H(yt(y), rt+1)

)σ̃
I{yt(y)≥a}

≤
(

1

(1− ε)B(rt+1)θyt(y)

)σ̃
I{yt(y)<a} +

(
1

H(a)

)σ̃
I{yt(y)≥a}

≤
(

1

(1− ε)B(rt+1)θyt(y)

)σ̃
+m,

so that taking expectation (with respect to information at time 0):

E

{(
1

yt+1(y)

)σ̃}
≤ E

{(
1

(1− ε)B(rt+1)θ

)σ̃}
E

{(
1

yt(y)

)σ̃}
+m,

as yt(y) and rt+1 are independent

= λE

[(
1

yt(y)

)σ̃]
+m, using (57). (58)

From (58) it follows that the sequence
{
E
(

1
yt(y)

)σ̃}∞
t=0

is Cauchy and hence, conver-

gent and bounded. Thus, (55) holds. Note that M(y) > 0. Now, fix any y > 0 and

choose any ξ > 0. Choose α̂(y) ∈ (0, y) such that:

α̂(y) ≤
(

ξ

M(y)

) 1
σ̃

. (59)

We will show that for all t ∈ N,

P{yt(y) < α̂(y)} ≤ ξ, (60)
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so that part (i) of the proposition holds. To see that (60) holds for all t, suppose to

the contrary that there is some t for which (60) does not hold, i.e.,

P{yt(y) < α̂(y)} > ξ. (61)

Then,

E

{(
1

yt(y)

)σ̃}
= E

[(
1

yt(y)

)σ̃
I[yt(y)<α̂(y)] +

(
1

yt(y)

)σ̃
I[yt(y)≥α̂(y)]

]

≥ E

[(
1

yt(y)

)σ̃
I[yt(y)<α̂(y)]

]
≥
(

1

α̂(y)

)σ̃
P{yt(y) < α̂(y)}

>

(
1

α̂(y)

)σ̃
ξ , using (61),

≥ M(y), using (59),

which contradicts (55). Thus (60) holds for all t. This establishes (13).

(ii) As c(ỹ) > 0 and x(ỹ) > 0 for all ỹ > 0, it is suffi cient to show that

Pr{limt→∞ sup yt(y) > 0} = 1. Fix any ξ > 0 and let α̂(y) > 0 be chosen so

that (13) holds. Observe that

{ω ∈ Ω : lim
t→∞

yt(y) = 0} ⊂ ∪∞T=0{ω ∈ Ω : yt(y) < α̂(y) for all t ≥ T},

and as the sets {ω ∈ Ω : yt(y) < α̂(y) for all t ≥ T} are nested and expanding in T,

Pr{ lim
t→∞

yt(y) = 0} ≤ lim
T→∞

Pr{yt(y) < α̂(y) for all t ≥ T}
≤ lim sup T→∞ Pr{yT (y) < α̂(y)} ≤ ξ, using (13).

As ξ is arbitrary, Pr{limt→∞ yt(y) = 0} = 0, i.e., Pr{lim sup t→∞ yt(y) > 0} = 1.

(iii) Follows immediately from (ii).

A.3 Proof of Proposition 3
Consider finite horizon version of the stationary stochastic dynamic optimization

problem outlined in section 2. In particular, for T ∈ N, and given initial stock y ≥ 0,

the agent maximizes:

E

[
T∑
t=0

δtu(c̃t)

]
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over a feasible stochastic process {ỹt, c̃t, x̃t}Tt=0 where ỹ0 = y, where {c̃t, x̃t} are Ft
adapted where Ft is the (sub) σ-field generated by partial history from periods 0

through t and:

(i) c̃t ≥ 0, x̃t ≥ 0 for t = 0, 1, ...T.

(ii) c̃t + x̃t ≤ ỹt, ỹt+1 = f(x̃t, rt+1.) for t = 0, 1, ...T.

Note that there is no terminal stock requirement in period T . Standard arguments

can be used to establish that there exists a unique optimal decision rule in each period

t and it depends only on the number of periods left till the end of the time horizon.26

Lemma 6 Consider the T−period finite horizon problem. There exist (unique) op-
timal consumption and investment functions denoted by cτ (y) and xτ (y) that depend

only on τ , the number of periods remaining till the end of the time horizon; in any

period t = T − τ , it is optimal to consume cτ (y) and invest xτ (y) if current output

is y. For all y > 0, cτ (y) > 0 for all τ ∈ N, xτ (y) > 0 for all τ ∈ N+. For every
τ ∈ N+, cτ (y) and xτ (y) are continuous and strictly increasing on R+. The following
stochastic Ramsey-Euler equation holds for all τ ∈ N and y > 0,

u′(cτ+1(y)) = δE[u′(cτ (f(xτ+1(y), r)))f ′(xτ+1(y), r)]. (62)

Proof. Using induction on τ and fairly standard arguments as in the infinite horizon
case.

The next lemma establishes a uniform upper bound on the optimal propensity to

invest in finite horizon problems.

Lemma 7 Assume (U.4) and Condition B. Further, suppose that θ < 1.Then, the

following hold:

(i) For every τ ∈ N and y > 0.

xτ (y)

y
≤ θ. (63)

(ii) The finite horizon optimal investment functions converge point-wise to the

26See, among others, Majumdar and Zilcha (1987)
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optimal investment function for the infinite horizon problem, i.e.,

lim
τ→∞

xτ (y) = x(y) for all y ≥ 0.

Proof. (i) Note that as θ < 1

θ = s0 =
[
δE((B(r))1−ρ0)

]1/ρ0 < 1.

As x0(y) = 0 for all y > 0, (63) holds for τ = 0. Suppose (63) holds for τ = t ∈ N.
For every y > 0, we have from (62) that:

(ct+1(y))−ρ0 = δE[(ct(f(xt+1(y), r)))−ρ0f ′(xt+1(y), r)],

and as (63) holds for τ = t, ct(y) ≥ (1− θ)y for all y > 0, we have

(ct+1(y))−ρ0 = δE[(ct(f(xt+1(y), r)))−ρ0f ′(xt+1(y), r)]

≤ δE[((1− θ)(f(xt+1(y), r)))−ρ0f ′(xt+1(y), r)],

which implies that:(
ct+1(y)

y

)−ρ0
≤ δ(1− θ)−ρ0E

[(
f(xt+1(y), r)

xt+1(y)

)−ρ0
f ′(xt+1(y), r)

][
xt+1(y)

y

]−ρ0
≤ δ(1− θ)−ρ0E

[
(B(r))1−ρ0

] [xt+1(y)

y

]−ρ0
, (using Condition B)

= (1− θ)−ρ0θρ0
[
xt+1(y)

y

]−ρ0
,

so that (
xt+1(y)

y

)(
1− xt+1(y)

y

)−1
≤ θ

1− θ ,

which yields:
xt+1(y)

y
≤ θ.

Thus, (63) holds for all τ ∈ N.
(ii) The policy convergence follows from the suffi cient conditions in Schäl (1975).

In particular, one can check that both assumptions (GA) and (C) in section 2 of that
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paper are satisfied.27

Proposition 3 follows immediately from parts (i) and (ii) of the above lemma.

A.4 Proof of Proposition 4
First, consider the case where E[ln (B(r))] < 0. We will show that in this case,

every feasible stochastic process must converge to zero with probability one. This

is similar to the result reported in Kamihigashi (2006). Given any initial stock y >

0, any feasible stochastic process {ỹt(y), c̃t(y), x̃t(y)} satisfies ỹt(y) ≤ yMt (y) where

{yMt (y)} is the stochastic process defined by yM0 = y, yMt+1 = f(yMt , rt+1) for all t ≥ 0;

as f(yMt , r) ≤ B(r)yMt for all r ∈ A, it is easy to check that for all t ≥ 1:

ln ỹt(y) ≤ ln yMt ≤ ln y +
t∑
i=1

lnB(ri) = ln y + t

[
1

t

t∑
i=1

lnB(ri)

]
. (64)

and as rt’s are i.i.d., the strong law of large numbers implies 1
t

∑t
i=1 lnB(rt) →

E[ln (B(r))] with probability one as t → ∞;E[ln (B(r))] < 0 then implies that as

t → ∞, the right hand side of (64) converges to−∞ and ỹt(y) → 0 with probability

one.

Next, we consider the case where E[ln (B(r))] ≥ 0. Condition (16) of the propo-

sition then implies that θ < 1, i.e., θ = s0 < 1. Consider the stochastic process

{yt(y), ct(y), xt(y)} generated by the optimal policy from initial stock y ≥ 0. The

result is trivial if y = 0. So, consider y > 0. Using Proposition 3 we have

H(y, r) = f(x(y), r) =
f(x(y), r)

x(y)
x(y) ≤ B(r)x(y) ≤ B(r)θy,

so that for all t ≥ 1

yt(y) = H(yt−1(y), rt) ≤ B(rt)θyt−1(y),

which can be used to show that

ln yt(y) ≤ ln y +

t∑
i=1

ln θB(ri) = ln y + t

[
1

t

t∑
i=1

ln θB(ri)

]
.

27If ρ0 > 1, we are in the "negative" case in Schäl (1975) and assumption (C) specified in that
paper always holds (see discussion in Section 2 of that paper). If ρ0 ≤ 1, our assumption (D.1)
implies that assumption (C) in Schäl (1975) holds.
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Using similar arguments as above, (16) implies that as t → ∞, yt(y) → 0 with

probability one.

A.5 Proof of Proposition 5
Note that (17) implies E[lnB(r)] > 0 which implies that Condition C holds if

θ = 1. If θ < 1, then as mentioned in section 4, Condition C holds if and only if (12)
holds. Using Jensen’s inequality,

[{
lnE

(
(B(r))1−ρ0

)}
−
{
E ln(B(r)1−ρ0)

}]
≥ 0,

so that (17) implies that (12) holds.

A.6 Proof of Proposition 6
(a) At ρ0 = 1, θ = δ so that E[ln(δB(r))] < 0 implies that (16) holds forρ0 close

to 1 (θ being continuous in ρ0); the result then follows from Proposition 4.

(b) Consider ρ0 > 1. If θ = 1, then 0 < E[lnB(r)] immediately implies Condition

C holds. So, consider θ < 1. Here, θ = s0 in which case Condition C holds if, and

only if, (12) holds, i.e.,

E[ln(δB(r))] + q(ρ0) > 0, (65)

where the function q(ρ) is given by

q(ρ) =
[{

lnE
(
(B(r))1−ρ

)}
−
{
E ln(B(r)1−ρ)

}]
for ρ > 1,

and q(ρ) > 0 as the distribution of B(r) is non-degenerate. We will show that

q(ρ)→ +∞ as ρ→∞ so that (65) (and therefore Condition C) holds for all ρ0 large
enough. Observe that

q(3) =

[
lnE

(
1

B(r)

)2
+ 2E lnB(r)

]
> 0.
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Consider any ρ > 3. Then

q(ρ) = (ρ− 1)

[
1

ρ− 1

{
lnE

(
(B(r))1−ρ

)}
+ E ln(B(r))

]

= (ρ− 1)

ln

{
E

(
1

B(r)

)ρ−1} 1
ρ−1

+ E ln(B(r))


≥ (ρ− 1)

[
1

2
ln

{
E

(
1

B(r)

)2}
+ E ln(B(r))

]

=
(ρ− 1)

2
q(3)→ +∞ as ρ→∞.

where the inequality in the third line follows from Liapounov’s Inequality28. This

completes the proof of part (b).

(c) As s0 → δEB(r) when ρ0 → 0, δEB(r) > 1 implies that θ = 1 for all ρ0 close

enough to 0; 0 < E[lnB(r)] then implies that Condition C holds for ρ0 small enough.

A.7 Proof of Proposition 7
Under (T.5), the functions H,H and H defined in section 2 are continuous and

strictly increasing in y. Further, for all y ∈ (0, K] and r ∈ A,

K ≥ H(y) ≥ H(y, r) ≥ H(y) > 0.

As x(y) > 0 for all y > 0, using assumption (T.4) and (T.5), H(y) > H(y) for all

y > 0 and H(y) < y, for all y > K. Define

β = inf{y > 0 : H(y) ≤ y}. (66)

We begin by stating and proving a useful lemma.

Lemma 8 Assume (T.3), (T.4), (T.5) and Condition C. Then, β > 0. Further, (i)

H(y) > y, for all y ∈ (0, β), (ii) H(β) = β and (iii) H(y) < y for all y ≥ β.

Proof. From Proposition 1, we have lim infy→0
x(y)
y
≥ θ. Observe that E(ln θB(r)) ≤

lnE(θB(r)) so that Condition C implies θE(B(r)) > 1. Choose λ0 ∈ ( 1
θE(B(r))

, 1).

28See Chung (1974, pp. 47): E(|X|k) 1k ≤ E(|X|m) 1m where 1 < k < m <∞.
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There exists ε > 0 such that for all y ∈ (0, ε] and r ∈ A,

H(y, r)

y
=
f(x(y), r)

y
=
f(x(y), r)

x(y)

x(y)

y
≥ B(r)λ0θ,

so that E(H(y, r)) ≥ λ0E(B(r))θy > y which implies that H(y) > y for all y ∈ (0, ε].

Thus, K ≥ β > ε > 0 and H(β) = β. This also implies that H(β) < β. From the

Ramsey-Euler equation (7):

u′(c(β)) = δE[u′(c(H(β, r)))f ′(x(β), r)]

> δE[u′(c(H(β)))f ′(x(β), r)]

= δE[u′(c(β))f ′(x(β), r)],

so that δE[f ′(x(β), r)] < 1 (the strict inequality in the second line follows from

the fact that c(y) is strictly increasing, H(β, r) ≤ H(β) with probability one and

H(β, r) < H(β) with strictly positive probability using assumption (T.5)). As x(y)

is strictly increasing in y we have that for all y > β, δE[f ′(x(y), r)] < 1. Once again

using the Ramsey-Euler equation, for all y > β,

u′(c(y)) = δE[u′(c(H(y, r)))f ′(x(y), r)]

≤ δu′(c(H(y)))E[f ′(x(y), r)] < u′(c(H(y))),

and as c(y) is strictly increasing, this implies that H(y) < y for all y > β. This

completes the proof of the lemma.

Proof of Proposition 7: The proof is entirely based on Kamihigashi and Stachurski
(2014), hereafter K-S. Let S = (0, K] be the state space and let F be the set of all
Borel subsets of S. Let Q be the associated kernel defined by:

Q(x,B) = Pr{H(x, r) ∈ B},∀B ∈ F .

Define the notion of stationary (invariant) distribution, unique stationary distribution

and global stability of Q on S as in section 2.1 in K-S. Note that global stability of

Q on S is equivalent to the existence of a unique invariant distribution on S and

convergence (in distribution) to this invariant distribution from all y ∈ S. Let P be

the probability measure defined on the product space in the usual manner. From
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Theorem 1 in K-S, global stability of Q is established if: (a) Q is increasing, (b)

Q has an excessive distribution, (c) Q is order reversing, and (d) Q is bounded in

probability. These concepts are formally defined in sections 2.1 and 2.2 of K-S.

From Remark 3 in K-S, it follows that since H(y, r) is strictly increasing in y, Q is

increasing. As S has a greatest element (namely, K), Q has an excessive distribution

(see Remark 2 in K-S). We now show that Q is order reversing. From Lemma 8,

H(y) < y for all y ∈ [β,K]. As H is continuous, there exists ỹ ∈ (0, β) such that

H(y) < y for all y ∈ [ỹ, K]. It is suffi cient to show that for any y1, y2 ∈ (0, K], y2 ≥ y1

there exists t ∈ N+ such that

P{yt(y2) ≤ ỹ} > 0 and P{yt(y1) ≥ ỹ} > 0.

We first show that there exists τ 1 ∈ N such that for any t ≥ τ 1, H
t(y2) < ỹ (where

H i(.) = H(H i−1(.)), H1 = H). To see this, first note that as H is strictly increasing

(under assumption (T.5)), if H t(y2) < ỹ for some t, then H t+1(y2) = H(H t(y2)) <

H(ỹ) < ỹ and by induction, H t+i(y2) < ỹ for all i ≥ 1. Now, suppose that for

all t = 1, ...∞, H t(y2) ≥ ỹ. Then, H t(y2) ∈ [ỹ, K] for all t and as H(y) < y for all

y ∈ [ỹ, K], H t+1(y2) = H(H t(y2)) < H t(y2) i.e., the sequence {H t(y2)}∞t=1 is a strictly
decreasing and bounded sequence that converges to some w ∈ [ỹ, K]. As H t(y2) =

H(H t−1(y2)) and H is continuous, we have H(w) = w which contradicts H(y) < y

for all y ∈ [ỹ, K]. Thus, there exists τ 1 ∈ N such that for all t ≥ τ 1, H
t(y2) < ỹ. Using

assumption (T.5) we then have,

P{yt(y2) < ỹ} > 0 for all t ≥ τ 1 (67)

From Lemma 8, H(y) > y for all y ∈ (0, β) and further, H(y) ≥ min{y, β} for
all y ∈ (0, K]. We now show that there exists τ 2 ∈ N such that for any t ≥ τ 2,

H
t
(y1) > ỹ (where H

i
(.) = H(H

i−1
(.)), H

1
= H). To see this, first note that as

H is strictly increasing under assumption (T.5), if H
t
(y1) > ỹ for some t, then

H
t+1

(y1) = H(H
t
(y1)) > H(ỹ) > ỹ and by induction, H

t+i
(y1) > ỹ for all i ≥ 1.

Now, suppose that for all t = 1, ...∞, H t
(y1) ≤ ỹ. Then, H

t
(y1) ∈ (0, ỹ] ⊂ (0, β)

for all t so that H
t+1

(y1) = H(H
t
(y1)) > H

t
(y1) i.e., the sequence {H t

(y1)} is a
strictly increasing and bounded sequence that converges to some w′ ∈ (0, ỹ]. As

H(H
t
(y1)) = H

t
(y1) for each t and H is continuous, we have H(w′) = w′ which

contradicts H(y) > y for all y ∈ (0, β).Thus, there exists τ 2 ∈ N such that for all
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t ≥ τ 2, H
t
(y1) > ỹ. Using assumption (T.5) we then have,

P{yt(y1) > ỹ} > 0 for all t ≥ τ 2 (68)

For t ≥ max{τ 1, τ 2}, both (67) and (68) hold and thus, Q is order reversing. Finally,
we show that Q is bounded in probability, i.e., the sequence {Qt(y, .)} is tight for all
y ∈ S. Here, Qt is the t-th order kernel giving the probability of transiting from y to

B ∈ F in t steps and formally defined by

Q1 = Q,Qt(y,B) =

∫
Qt−1(z,B)Q(y, dz).

Now, for any y ∈ S, the sequence {Qt(y, .)} is tight if for any ξ > 0, there exists a

compact set D ⊂ S such that Qt(y, S −D) ≤ ξ for all t. Proposition 2(i) shows that

for any y ∈ (0, K] and for any ξ > 0, there exists α̂(y) > 0 such that

P{yt(y) < α̂(y)} < ξ for all t.

Defining D = [ α̂(y), K], we can see that Q is bounded in probability. The proof is

complete
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