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In a general discrete time model of optimal forest management where land may be
diverted to alternative use and stocks of standing trees may yield flow benefits, we
investigate the economic and ecological conditions under which optimal paths lead to
(total) deforestation i.e., complete long term removal of forest cover. We show that if
deforestation occurs from some initial state, then it must occur in finite time along every
optimal path so that zero forest cover is the globally stable optimal steady state. We
develop a condition that is both necessary and sufficient for deforestation. Deforestation is
less likely if the immediate profitability of timber harvest, the benefits from stocks of
standing forests and the timber content of trees are higher. We characterize the minimum
forest cover along optimal paths (when deforestation is not optimal). We design a simple
linear subsidy on standing forest biomass that can motivate a private owner (who does
not take into account the external benefits from standing trees) to conserve forests.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Deforestation is an important environmental concern. Globally, around 13 million hectares of forests disappeared each
year between 2000 and 2010 (Global Forest Resources Assessment, 2010).2 Social scientists tend to focus on tropical
deforestation3 where weakness of property rights (leading to encroachment and illegal logging) and myopic management
practices are some of the key human factors.4 However, deforestation may occur even when property rights are well defined
(and strongly enforced) and forest management is based on a long time horizon. Depending on the intertemporal costs and
benefits that a forest manager takes into account, deforestation can be the consequence of an optimal strategy where trees
, Southern Methodist University, 3300 Dyer Street, Dallas, TX 75275-0496, USA. Tel.: þ1 214 768 2714;

za), sroy@smu.edu (S. Roy).
ica Federico Santa María. Avda. España 1680, Casilla 110-V, Valparaíso, Chile. Tel.: þ56 22 3037 331;

sessment 2010 (Global Forest Resources Assessment, 2010) forests currently cover about 4 billion
e earth's land surface.
ion (see, for instance, Angelsen and Kaimowitz, 1999) that focuses on somewhat different economic
orests.
Amacher et al. (2009).

www.sciencedirect.com/science/journal/01651889
www.elsevier.com/locate/jedc
http://dx.doi.org/10.1016/j.jedc.2015.01.004
http://dx.doi.org/10.1016/j.jedc.2015.01.004
http://dx.doi.org/10.1016/j.jedc.2015.01.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.01.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.01.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jedc.2015.01.004&domain=pdf
mailto:adriana.piazza@usm.cl
mailto:sroy@smu.edu
http://dx.doi.org/10.1016/j.jedc.2015.01.004
http://dx.doi.org/10.1016/j.jedc.2015.01.004


A. Piazza, S. Roy / Journal of Economic Dynamics & Control 53 (2015) 15–2716
are cut down without replanting and forest land is diverted to alternative uses over time. This paper attempts to char-
acterize the economic and ecological conditions under which optimal dynamic management leads to deforestation.

Besides timber and shelter, forests provide many environmental services such as biodiversity, water and soil
conservation, water supply, climate regulation and carbon sequestration. Reduction in total forest area has led to a decrease
in carbon stocks sequestered in the forest biomass by an estimated 0.5 Gt per year over the decade 2000–2010; this has
contributed significantly to adverse climate change. Often, there are no markets for such non-timber products and services
provided by forests.5 We highlight the role that such benefits flowing from stocks of standing forests can play in
determining whether or not deforestation is optimal, and the implications for design of optimal subsidies to incentivize
private owners (that may not take into account these benefits) to conserve forests.

In the existing literature, conditions for optimal extinction and conservation have been characterized for renewable
resources whose biological growth depends mainly (if not exclusively) on the size of the remaining population.6 Forests are
however somewhat different from many other renewable resources in that regeneration is largely dependent on the
availability of land and on decisions regarding land use. Models of forest management also need to take into account the
relatively long rotation, the multi-age structure and the age dependent timber content of trees. In managed forests, trees can
always be planted and zero resource stock is not an absorbing state. As a result, the concept of “extinction of a forest” is
somewhat different from that for other biological species.7 In this paper, we focus on (total) deforestation which is said to
occur when all available land is diverted to alternative (non-forest) use and the area under forest cover dwindles to zero
over time.8

Optimal forest harvesting is a problem that dates back to the 19th century. In his seminal paper, Faustmann (1849)
proposed an appropriate formula for valuation of an even-aged forest that allows one to determine the optimal rotation
length. A wide literature has developed since then in numerous directions that range from more sophisticated growth
models to models that allow for non-timber forest products such as tourism and environmental services. Optimal harvesting
policies are frequently studied numerically with different types of even-flow constraints, or requiring convergence to a
predetermined steady state (Johnson and Scheurman, 1977; Lyon and Sedjo, 1983, 1986).

The optimal timber harvesting problem was reconsidered by Mitra and Wan (1985, 1986) in a discrete time dynamic
theoretical framework that allows for more general analytical characterization. In this paper, we consider a variation of this
well known model of optimal forest management. It assumes that the timber content per unit of forest area is related only to
the age of the trees, so that the forest can be represented as a collection of age classes.9 The focus of the Mitra–Wan papers
(and indeed of much of the subsequent theoretical literature on optimal forest use, see for example Salo and Tahvonen,
2003; Tahvonen, 2004a) is on the dynamics of forest rotation and it is assumed that the total area under forests is fixed over
time. In order to study the problem of depletion of forest area, we extend the model to allow for alternative use of land.

Such a model with alternative use was studied analytically by Salo and Tahvonen (2002, 2004). They focus on the
existence and uniqueness of the steady state. They show the existence of optimal periodic cycles when the steady state is a
pure forestry state (with no alternative use), and the impossibility of such cycles if the steady state is “mixed”; they also
analyze the stability of the steady state in the latter case. While their analysis allows for the possibility of an optimal steady
state where land is allocated exclusively to alternative use, they do not explicitly study the existence or stability of such a
steady state and therefore, their analysis does not shed light on the specific issue of deforestation.

Apart from allowing for alternative use and focusing on deforestation, our model also allows for a flow of benefits from
stocks of standing forests that may capture environmental externalities that could be taken into account by a social planner,
as well as earnings from subsidies (for instance, based on forest area or timber content) and recreational use that add to the
profits earned by a private owner.10 This is in addition to the usual benefits from timber harvests. In the existing literature, a
number of papers have studied optimal forest management with stock benefits of various kind; to the best of our
knowledge, none of them allow for alternative simultaneous (non-forest) use of land. Bowes and Krutilla (1985, 1989)
consider stock benefits from standing forests in an age class forestry model; they extend the Mitra–Wan framework to
include a benefit that depends on the standing age class distribution of the forest. They characterize the steady states and
the occurrence of periodic cycles.11 Tahvonen (2004a,b) studies the optimal management of a forest with a somewhat
different kind of stock benefit that depend on the positive environmental externality emanating from the forest area
devoted to old trees which are never harvested for timber. Apart from the existence of optimal periodic cycles, it is shown
that the introduction of such a stock benefit can lead to a continuum of steady states. Our paper extends the broad
5 The non-market value of a large part of standing forests may exceed the value of timber extracted or even that of converting land to alternative uses
(Pearce, 2001).

6 See, for instance, Clark (1973).
7 There is a literature on forest use using mining models that focuses on the effect of depletion of old-growth timber stands on prices of timber and

allows for the possibility of full depletion. See, among others, Berck (1979), Lyon (1981) and Lyon and Sedjo (1983).
8 Note that this concept differs from the usual sense of the term “deforestation” as referring to any decline in forest cover.
9 This assumption may not be applicable to wild forests.
10 For biological species and other renewable resources whose reproduction depends on existing population size, there is a fairly extensive analysis of

optimal conservation and extinction in a framework that allows for stock effects in net benefits from harvesting. See, for instance, Olson and Roy (1996).
11 Bowes and Krutilla compute examples where deforestation (in their framework, a situation where all land is eventually barren) is avoided only if the

stock benefits are taken into account. In these examples, it is assumed that each age class is either fully harvested or left untouched.
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framework in this literature by allowing for alternative economic use of land but our analysis is focused on characterization
of one specific aspect of optimal paths namely, deforestation.

We show that if deforestation occurs, then it must occur in finite time (in fact, in our model, within the first n periods
where n is the lifetime of a tree). We develop a tight condition for deforestation to be optimal; this is a verifiable condition
on the exogenous elements of the model such as the benefit from timber harvesting and standing forest stocks, the cost of
planting trees, the discount factor, the benefit from alternative use and the timber content of trees of various ages. The
condition is both necessary and sufficient for deforestation and is, in fact, identical to the condition under which the state of
deforestation is an optimal steady state, and also the condition under which such a state is globally stable. In other words,
deforestation can occur along some optimal path if, and only if, zero forest cover is the unique optimal steady state and
independent of the initial condition of the forest, this state is reached in finite time. One reason why this is interesting is
because models of forest use are known to generate periodic cycles and optimal steady states that are not globally stable;
our analysis indicates that such nonlinear dynamics and multiplicity of attractors do not characterize optimal paths in
circumstances where deforestation is optimal.

Our general results are applied to the problem of a private owner who ignores the environmental services provided by
the standing forest, and the problem of a social planner who takes them into account. We characterize situations under
which deforestation is privately but not socially optimal and make policy suggestions about the design of subsidies based on
standing forest stocks. Further, in situations where deforestation is not optimal for the forest manager, we derive lower
bounds on the forest cover under the optimal harvesting policy; this is of particular relevance given the fact that actual forest
cover may cycle over time along the optimal path. Finally, we derive some interesting comparative statics. For instance, we
show that deforestation is less likely if the price of timber increases (for instance, because of an increase in demand for
timber), the cost of planting new trees decreases (technology improvement), the timber content of trees increases and if the
return on alternative use declines.

The paper is organized as follows. Section 2 presents the model and derives a set of Euler inequalities satisfied by any
optimal program. Section 3 contains the main contribution of this paper i.e., the necessary and sufficient conditions for
deforestation and their implications for public policy. Section 4 discusses results on lower bounds on forest cover along the
optimal path in situations where deforestation is not optimal. Section 5 illustrates our key results with a numerical example.
Section 6 discusses possible extensions of the model and indicates how our results may be modified by some of these.
Section 7 concludes. All proofs are contained in the appendix.

2. Preliminaries

Time is discrete and is indexed by t ¼ 0;1;2;… : Total area of land is constant over time and set equal to 1. Land is
allocated between forest and an alternative use. The forest consists of trees whose age can vary from 1 to n where n41
represents the age at which a tree dies or loses its economic value. The timber content per unit of forest area is related only
to the age of the trees. Hence, we can group the trees into n age classes and represent the state of the forest by specifying the
area occupied by each one of them.12 More precisely, let xa;t denote the area occupied by the output of trees of age a at the
very beginning of period t before any harvesting or planting of trees take place. In each period t, the state of the forest can be
represented by the vector xt ¼ ðx1;t ;…; xn;tÞ,13 where xt belongs to the set D defined by

D¼ xARn
þ :
Xn
a ¼ 1

xar1

( )
:

We assume that all land not occupied by this standing forest has been dedicated to alternative use. The area under
alternative use at the beginning of period t (or more precisely, during the full length of period ðt�1Þ) is then given by

yt ¼ 1�
Xn
a ¼ 1

xa;t : ð1Þ

Given the current state xt at the beginning of period t, the forest manager or owner (hereafter, agent) makes two sets of
decisions; both are made at the beginning of period t. First, the agent decides on ca;tA ½0; xa;t �, the part of the land occupied
by (the output of) trees of age-class a that is harvested in that period, a¼ 1;…;n. The size of current harvest at the beginning
of period t is then ct ¼ ðc1;t ;…; cn;tÞ. Without loss of generality, we assume that cn;t ¼ xn;t . After this harvest,

za;t ¼ xa;t�ca;t

is the area occupied by trees of age class a that remain standing, a¼ 1;…n. Second, given the harvesting decision ct , the total
land available for replanting is

Pn
a ¼ 1 ca;tþyt; of this area, the agent plants an area z0;tA ½0;Pn

a ¼ 1 ca;tþyt �with new seedlings
and the rest (denoted by ytþ1Þ is diverted to alternative use during the full length of the period t. With the understanding
12 In their papers, Mitra and Wan take n to be the age at which the biomass per unit of land is maximized. It was pointed out by Khan and Piazza (2012),
that the concavity of the benefit function favors a homogeneously configured forest and that it may be optimal to postpone harvesting beyond age n in
order to reshape the forest into a more homogeneous state. Following the approach used in Khan and Piazza (2012), we circumvent this by assuming n to
be the age after which a tree dies.

13 The expressions in bold print represent vectors.
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that age 0 represents new seedlings and that zn;t ¼ 0, the vector zt ¼ ðz0;t ; z1;t ;…zn�1;tÞ then gives us the land occupied by the
input of trees of all age classes at the beginning of period t after harvesting and replanting decisions are made. This input
generates the output of trees of various age classes at the beginning of period tþ1 through the natural production process of
aging. In particular, the area occupied by (the output of) trees of age ðaþ1Þ at the very beginning of period tþ1 is given by

xaþ1;tþ1 ¼ za;t ; a¼ 0;1;…n: ð2Þ
At the very beginning of period tþ1 (prior to any harvesting and replanting), the agent faces a standing forest

xtþ1 ¼ ðx1;tþ1;…xn;tþ1Þ ¼ ðz0;t ; x1;t�c1;t ;…; xn�1;t�cn�1;tÞ
and an amount ytþ1 ¼ 1�Pn

a ¼ 1 xa;tþ1 of land that has been dedicated to alternative use (over the full length of the period t).
A sequence fxtgt is a program iff

xtAD8t and xaþ1;tþ1rxa;t for a¼ 1;…;n�1 8 t
Associated with any program, we have a sequence of land dedicated to the alternative use, fytg, and a sequence of harvests,
fctg, that are calculated using (1) and (2) respectively.

As in the original model analyzed by Mitra and Wan (1985, 1986), the timber content of one unit of area covered by trees
of age a is given by the production function f ðaÞZ0. For notational convenience, we define the biomass coefficients as
f a ¼ f ðaÞ for a¼ 1;…;n.14 The total timber consumption in period t is given by ct:

ct ¼
Xn
a ¼ 1

f aca;t : ð3Þ

After tree cutting at the beginning of period t, the agent receives net benefit from timber harvesting, UðctÞ. In addition, at the
beginning of period t, the agent receives return WðytÞ from the dedication of land yt to alternative use over the length of the
previous period ðt�1Þ. Immediately after the cut, the seedlings of what will constitute the following period's young forest
are planted; planting of new trees has an associated cost of p40 per unit of area and the agent incurs a total planting cost of
pz0;t ¼ px1;tþ1.

In addition to the benefits and costs described above, the agent also derives “stock” benefit SðxtÞ that summarizes the
flow of benefits from standing trees at the beginning of period t. Here, SðxÞ may reflect amenity value, biodiversity
preservation and carbon sequestration externalities for a social planner, private owner's earnings from subsidies on timber
content or forest area, private and social benefits from tourism etc.

We impose the following assumptions on the benefit functions
A1:
14

Mitr
15
U and W are concave, non-decreasing, continuous on Rþ and differentiable on Rþ þ .

A2:
 S is continuous on D and differentiable on the interior of D. The partial derivatives (Sa) are non-negative and non-

increasing with respect to every coordinate xj.

A3:
 U is strictly concave in a neighborhood of zero.
Assumptions A1 and A2 are retained throughout the paper and will not be specified in the statements of the results,
while A3 is only used in Theorem 1.15 We follow the usual convention that U0ð0Þ is the right hand side derivative
U0

þ ð0Þ ¼ limh-0þ ðUðhÞ�Uð0ÞÞ=h. Similarly, the partial derivatives of S evaluated at a point in the boundary of D refer to the
corresponding one-sided partial derivatives.

Note that A1 and A3 imply that U is strictly increasing in a neighborhood of zero. We point out that we do not require any
of the functions to be increasing on their domains. Furthermore, we allow for S� 0 and W � 0, which corresponds to the
classical forest management model without alternative use presented by Mitra and Wan (1985); with the difference that in
our case land may be left fallow.

Given an initial state xAD, the dynamic optimization problem is

maximize
X1
t ¼ 0

bt ½UðctÞþWðytÞþSðxtÞ�px1;tþ1�

subject to ð1Þ–ð3Þ
fxtg is a program and x0 ¼ x

8>>>><>>>>: ð4Þ

where 0obo1 is the discount factor, ct and yt are the control variables and xt is the state variable.
In the following lemma we state some useful Euler inequalities that any optimal program must satisfy.

Lemma 1. Let fxtg1t ¼ 0 be an optimal program.
As in Khan and Piazza (2012), we dispense with most of the restrictions on the biomass coefficients that are found in the literature (for instance, in
a and Wan, 1985, 1986; Salo and Tahvonen, 2003, 2004; Tahvonen, 2004a).
A weaker version of Theorem 1 can be obtained without A3, see Footnote 16.
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If minj ¼ 1…afytþ jg40 for some tZ0, then

pþ
Xa
j ¼ 1

bjW 0ðytþ jÞZbaf aU
0ðctþaÞþ

Xa
j ¼ 1

bjSjðxtþ jÞ: ð5Þ

If ca;tþa40 for some t, then

pþ
Xa
j ¼ 1

bjW 0ðytþ jÞrbaf aU
0ðctþaÞþ

Xa
j ¼ 1

bjSjðxtþ jÞ: ð6Þ

3. Deforestation

3.1. Necessary and sufficient conditions for deforestation

As mentioned in the introduction, the concept of deforestation is related to depletion of area under forest and diversion
of such land to alternative (non-forest use). We begin by formally defining the concept of deforestation in the context of our
model.

Definition 1. A program fxtg1t ¼ 0 is said to be characterized by eventual deforestation if

lim
t-1

yt ¼ 1:

Definition 2. A program fxtg1t ¼ 0 is said to be characterized by immediate deforestation if yt is non-decreasing and

yt ¼ 1 for all tZn:

Obviously, immediate deforestation implies eventual deforestation. We will show that under assumption A3, immediate
deforestation is optimal from any initial state if, and only if, eventual deforestation is optimal from some initial state.
Further, they are also equivalent to the zero forest cover state, 0¼ ð0;…;0Þ being a (optimal) steady state. These results are
part of the next proposition, the main theoretical result of this paper, that develops a condition for deforestation that is both
necessary and sufficient.

Proposition 1. Under A3 the following assertions are equivalent16
1.
1

Every optimal program is characterized by immediate deforestation.

2.
 There exists an optimal program that is characterized by eventual deforestation.

3.
 The following conditions hold:

b
1�b

W 0 1ð ÞZ ba

1�ba
f aU

0 0ð Þþ 1
1�ba

Xa
j ¼ 1

bjSxj 0ð Þ� p
1�ba

8a¼ 1;…;n ð7Þ
4.
 The optimal policy is one where no new trees are planted in any period.

5.
 The state of zero forest cover (x¼ 0) is a globally stable steady state.

6.
 The state of zero forest cover (x¼ 0) is a steady state.
Proposition 1 indicates that the economic and ecological conditions under which optimal forest management leads to
immediate deforestation and those that lead to eventual deforestation are identical and in fact, they are the very same
conditions under which starting from a state where there is zero forest cover on land, it is optimal to not plant any new trees
and to remain in that state of zero forest cover forever. Under these conditions, the state of zero forest cover becomes a
globally stable steady state. Eq. (7) provides a very tight characterization of when all of these are optimal; it is a condition on
the exogenous elements of the model and is verifiable from its economic and ecological primitives.

The left hand side of (7) reflects the marginal (opportunity) cost of bringing some land under forests once and forever; i.e.,
the foregone benefit from alternative use. The right hand side of (7) captures the marginal benefit from planting trees; this
includes the marginal benefit from timber harvesting (realized at the points of time the planted trees are harvested) and the
flow of marginal stock benefits from the standing trees until their harvest minus the cost of planting trees. Eq. (7) requires that
starting from a state of zero forest cover, the dynamic marginal cost of planting trees exceeds the dynamic marginal benefit of
doing so. This suggests that it is not optimal to move from a state of zero forest cover i.e., that the latter is an optimal steady
6 Without A3 we have that 1 ) 2 ) 3 and that the strict inequality version of (7) implies 1. Hence, the equivalence of the assertions is lost.
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state. The fact that this condition also implies that it is optimal to converge to this steady state in finite time from any state
(i.e., independent of the extent of forest cover and the age structure of the forest) is the interesting part of Proposition 1.

It is easy to see from (7) that low timber content of trees, low price for timber (low marginal benefit from timber harvesting),
high planting cost and high marginal return on alternative use are likely to create greater incentives for deforestation. On the
other hand, technological changes that increase the timber content (or forest growth) or reduce harvesting costs are likely to
encourage conservation of forests. An increase in the stock benefits from standing forests internalized by the forest manager also
encourages conservation.

Observe that as b40, if U0ð0Þ ¼1, then deforestation can never occur (no matter how much the future is discounted). It
is already known that in this case, timber consumption must be positive in every time period, but the contribution of
Proposition 1 is stronger: if U0ð0Þ ¼1, there is no optimal program along which the forest cover converges to zero. However,
the area of forest cover might be very small.

Though we assume b40, it is easy to check that in our framework deforestation is always optimal for a myopic decision
maker with b¼0. Further, if U0ð0Þo1 then (7) is always satisfied and deforestation is optimal if b40 is small enough.
However, the effect of an increase in the discount factor b is ambiguous as both sides of (7) are increasing in b. More
assumptions are necessary to determine the effect of the variations of b. We will elaborate more in this effect in the next
subsection, when the function SðxÞ depends only on the total timber content of the standing forest.
3.2. Implications for public policy

Much of the stock benefits from standing forests (such as carbon sequestration) are in the nature of environmental
externalities that are typically not part of the cost-benefit calculations of a profit maximizing private owner (unless there is a
regulatory structure to ensure that these externalities are internalized). In this subsection, we use the general characterization in
Proposition 1 to focus on the difference between the private and social incentives to engage in deforestation. In particular, we
compare the condition for deforestationwhen the forest is managed by a private owner that ignores all stock benefits to that of a
social planner who takes into account these stock benefits. When deforestation is privately but not socially optimal, we examine
how simple public subsidy schemes can be designed to provide incentives to a private owner to avoid deforestation.

For simplicity, we assume that the direct social benefit from timber harvest is identical to the private owner's benefit or
profit; this holds for instance, if the timber harvest is entirely exported. As a result, the only difference between the private
and social optimization problems is that the former sets stock benefits equal to zero.

In the absence of any public policy or regulation, a private owner solves Problem (4) taking SðxÞ � 0. The necessary and
sufficient condition for deforestation (7) then reduces to

b
1�b

W 0 1ð ÞZ ba

1�ba
f aU

0 0ð Þ� p
1�ba

8a¼ 1;…;n ð8Þ

The social planner however does take into account the stock externalities from the standing forest. For simplicity, we
impose some more structure on the nature of stock benefits or externalities by assuming that it depends only on the total
timber content of the standing forest17 i.e.,

SðxtÞ ¼ A
Xn
a ¼ 1

f axa;t

 !
: ð9Þ

In addition, we impose the following assumption on Að�Þ,
A0
2:
17

as
P

biom
A is concave, non-decreasing, continuous in Rþ and differentiable in Rþ þ .
It is easy to see that if Að�Þ satisfies A0
2 then SðxÞ ¼ AðPn

a ¼ 1 f axa;tÞ satisfies A2. Once again, using (7) we have that defo-
restation is socially optimal if and only if

b
1�b

W 0 1ð ÞZ ba

1�ba
f aU

0 0ð Þþ 1
1�ba

A0 0ð Þ
Xa
j ¼ 1

bjf j�
p

1�ba
8a¼ 1;…;n ð10Þ

It is easy to check that the right hand side of (8) is smaller than or equal to that of (10) i.e., deforestation is privately optimal
if it is socially optimal, but for a subset of the parameter space deforestation is privately optimal but not socially optimal.

While it is always possible to fully align the private owner's incentives with the social planners by using a nonlinear
subsidy, we want to focus on a simple subsidy scheme. We will consider subsidies that are linear in total timber content of
the standing forest. In particular, in each period t, the total subsidy received by the private owner is λ

P
af axa;t where λZ0.
A very similar option is to take subsidies that are a function of the total forestry area, ðPaxa;t Þ, which can also be viewed as a tax on the alternative use,

axa;t ¼ ð1�yt Þ. As the analysis for these two options is analogous we will only present our results when the subsidy depends on the total standing
ass leaving the details of the latter case to the reader.
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With such a subsidy, the private owner now solves the optimization (4) where

SðxÞ ¼ λ
X
a
f axa;t : ð11Þ

Note that the specific form (11) of stock benefits is a special case of (9) and satisfies assumption A2. Using (7), a private
owner receiving such a subsidy will engage in deforestation if and only if

b
1�b

W 0 1ð ÞZ ba

1�ba
f aU

0 0ð Þþ λ
1�ba

Xa
j ¼ 1

bjf j�
p

1�ba
8a¼ 1;…;n

Deforestation is avoided if λ satisfies

λ4min
a

1Pa
j ¼ 1 b

jf j
pþb

1�ba

1�b
W 0 1ð Þ�baf aU

0 0ð Þ
� �( )

: ð12Þ

This gives us an explicit lower bound on the subsidy needed to avoid deforestation and indicates that forest stock subsidies
that are lower than a critical level are unlikely to have any effect on deforestation (small interventions are ineffective).

If (8) holds but (10) does not hold, i.e., deforestation is privately but not socially optimal, A0ð0Þ is greater than the right
hand side of (12). While a subsidy equal to A0ð0Þ, the marginal stock benefit at zero, can definitely avoid deforestation, we
can achieve the same by a smaller subsidy that lies between the right hand side of (12) and A0ð0Þ.

Note that improvement in timber content, the timber planting technology and an increase in the price at which timber
can be sold (an increase in demand for timber) reduce the minimal subsidy needed to avoid deforestation. As long as
deforestation is not socially optimal, any further increase in stock benefit from forests does not affect the subsidy needed to
avoid deforestation. On the other hand, the minimal subsidy is increasing in p, the cost of planting trees, and in W 0ð1Þ,
the marginal benefit from alternative use of land (at zero forest cover); both discourage forestry. Finally, if we assume that
the biomass coefficients are increasing in age, then it can be shown that minimal subsidy decreases with an increase in the
discount factor i.e., milder discounting promotes forest conservation. We prove this in Remark 1 in the Appendix.

Of course, even if deforestation is avoided, the forest cover ensured by this subsidy can be arbitrarily small. The next
section discusses how a subsidy can be designed to ensure that the forest cover is at a socially optimal level.

4. Minimum forest cover

When economic and ecological conditions rule out deforestation, it is of interest to understand the amount forest cover
that is sustained over time. Now, if the (necessary and sufficient) condition for deforestation (7) in Proposition 1 does not
hold, then all we know is that

lim
t-1

infyto1;

so that not only can the amount of forest cover be arbitrarily small but in fact, the forest cover may actually be zero along a
subsequence of time periods. In this paper, we do not focus on characterizing these possibilities (though an optimal path
that cycles between zero and positive forest cover would be qualitatively consistent with existing results on periodic cycles
in models of forest management). Instead, we will characterize the minimum forest cover that must be sustained along the
optimal path.

In what follows, we assume that (7) does not hold for at least one value of a so that deforestation is not optimal. Further,
we impose an additional assumptions on the function S. Let m be the index of the maximal biomass coefficient (i.e., f mZ f a
for all a¼ 1;…;n). Let em be the unit vector such that em ¼ 1 and ea ¼ 0 for all aam. We assume
A4:
18
SaðxÞZSaðem
P

jxjÞ for all a¼ 1;…;n and for all xAD.
Although A4 seems difficult to verify in general, it is satisfied if S depends only the total standing biomass (as in (9)) or the
total area under forest, and it is a concave function.

We assume A1, A2 and A4 for all the results in this section.

4.1. Deriving the minimum forest cover

We start defining the auxiliary functions gaðyÞ; a¼ 1;…;n, where

ga yð Þ ¼ pþb
1�ba

1�b
W 0 yð Þ�baf aU

0 f m 1�yð Þ� ��Xa
j ¼ 1

bjSj 1�yð Þemð Þ: ð13Þ

Using A1 and A2, one can check that ga is continuous and decreasing for all a¼ 1;…;n.18
They are strictly decreasing if either U or W is strictly concave or S1 is strictly decreasing with respect to xm.
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Let ~ya be defined by

~ya ¼ supfyA ½0;1�: gaðyÞZ0g ð14Þ
where ~ya ¼ 0 if gað0Þo0. Further, if gað0ÞZ0 and gað1Þr0 then ~ya is the largest (unique, if ga is strictly decreasing) solution
to gaðyÞ ¼ 0 in ½0;1�.

The next result identifies upper bounds on the area under alternative use.

Lemma 2. Let fxtg1t ¼ 0 be an optimal program. Then,

min
j ¼ 1;…;a

fytþ jgr ~ya 8a; 8tZ0:

The next proposition, which follows immediately from the above lemma, outlines lower bounds on the forest cover.

Proposition 2. Let fxtg1t ¼ 0 be an optimal program and let ~ya be as defined in (14). Then the following holds:

max
j ¼ 1;…;a

f1�ytþ jgZ1� ~ya 8a; 8t40;

i.e., the forest cover is above 1� ~ya at least once every a periods.

We single out the case a¼1 for its importance in terms of the conclusions that can be obtained. The proposition above
implies that, in particular,

Corollary 1. 1�ytZ1� ~y18t40, i.e., the forest cover is at least as large as 1� ~y1 at every time period.

Observe that gað1ÞZ08a if, and only if, (7) holds. Hence, in the absence of deforestation, we have gað1Þo0 for at least one
value of a. Whenever g1ð1Þo0, we have ~y1o1, i.e., the forest cover is bounded away from zero which can be thought of as
strong avoidance of deforestation. Whenever gað1Þo0 for some value of a41, we have ~yao1, i.e., there is partial forest cover
at least once every a periods – a somewhere weaker form of avoidance of deforestation. If U0ð0Þ ¼1, 1� ~ya40 for all a.

Corollary 2. The following hold
�

1

If g1ð0Þo0, i.e., if

pþbW 0ð0Þ�bf 1U
0ðf mÞ�bS1ðemÞo0 ð15Þ

then ~y1 ¼ 0 and there is full forest cover every period.

�
 If gað0Þo0, i.e., if

pþb
1�ba

1�b
W 0 yð Þ�baf aU

0 f m
� ��Xa

j ¼ 1

bjSj emð Þo0 ð16Þ

then ~ya ¼ 0 and there is full forest cover at least once every a periods.
Note that high planting cost or high marginal benefit from alternative use increase the value of ~ya
A for a¼ 1;…;n,

implying that we have a smaller lower bound on forest cover. Further, a decrease in the discount factor b, is likely to increase
the value of ~ya

A implying that the lower bound on forest cover is reduced. On the other hand, an increase on the price of
timber or in the marginal benefit from standing forest stock is likely to decrease the value of ~ya

A implying that we have a
larger lower bound on forest cover. Finally, the effect of a technological change that increases timber content or reduces
harvesting cost is ambiguous; we need more specific structure to obtain definite predictions.

4.2. Implications for public policy

To see how Proposition 2 can provide specific guidelines for public policy, we revert to the specific framework in Section 3.2
where we consider a private owner that ignores all stock benefits (set Sð�Þ ¼ 0Þ, a social planner that takes into account all stock
benefits (where Sð�Þ depends only on the total timber content as specified in (9)) and finally, a public subsidy policy where the
subsidy is linear in the total timber content (i.e., of the form λ

P
af axa).

19

Note that the specific form of the stock benefit function SðxÞ ¼ AðPaf axaÞ used by the social planner satisfies A2 and A4

whenever A fulfills A0
2. Further, with the linear subsidy, the private owner sets SðxÞ ¼ λ

P
af axa and this satisfies A4. The

auxiliary functions in (13) can now be re-written for each of the above mentioned cases. In the social planner's problem, the
9 This is just a specific version of Pigou tax for externalities (Pigou, 1932).
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corresponding ga function is

gaA yð Þ ¼ pþb
1�ba

1�b
W 0 yð Þ�baf aU

0 f m 1�yð Þ� ��A0 f m 1�yð Þ� �Xa
j ¼ 1

bjf j

and in the subsidized private owner facing linear subsidy λ
P

af axa it is given by

gaλ yð Þ ¼ pþb
1�ba

1�b
W 0 yð Þ�baf aU

0 f m 1�yð Þ� ��λ
Xa
j ¼ 1

bjf j

The definitions of ~ya
A and ~ya

λ are analogous to (14).
To ensure that in the problem faced by the subsidized private owner the lower bound on the forest cover ~y1

λ coincides
with the socially optimal lower bound ~y1

A it is sufficient to choose subsidy rate λ equal to

λ1 ¼ A0ðf mð1� ~y1
AÞÞ ð17Þ

If, on the other hand, to ensure that the “at least once every a periods” – lower bound on the forest cover ~ya
A is also met by

the private owner, the subsidy rate λ can be set equal to

λa ¼ A0ðf mð1� ~ya
AÞÞ: ð18Þ

Under assumption A0
2, these values of λ are non-negative.
5. Example

To illustrate the conditions presented in the previous sections, we provide a numerical example. We consider a dual aged
forest ðn¼ 2Þ where the biomass coefficients are f 1 ¼ 0:45 and f 2 ¼ 1.20 We choose a discount factor b¼0.9. We assume that
the benefit functions U and S are quadratic and W is linear; in particular,

U cð Þ ¼ α1c�
α2

2
c2 with α1 ¼ 2; α2 ¼ 0:8

A xð Þ ¼ β1x�
β2

2
x2 with β1 ¼ 1:5; β2 ¼ 0:4

WðyÞ ¼ωy with ω¼ 1:25

With these parameters' values, it is easy to check that while (10) is not satisfied, (8) holds. We are then in a situation
where deforestation is privately but not socially optimal in the absence of subsidies. If we design a simple subsidy that is
linear in total timber content i.e., of the form λ

P
af axa, then (12) implies that to avoid total deforestation the parameter λ

must be larger than

min
1
bf 1

pþbωð Þ�α1;
1

bf 1þb2f 2
pþ bþb2
� �

ω�bα1

h i( )
� 0:59

Now suppose the objective of public policy is to go beyond the simple avoidance of total deforestation and try to ensure
certain lower bounds on the forest cover (in the privately optimal path). With the parameters' values defined above we find
that ~y1

A � 0:81 and ~y2
A � 0:03. From (17), we see that if the social planner wants to assure a minimal forest cover (derived from

the social planner's problem) of 1� ~y1
A � 0:19 every time period, the subsidy rate λ1 must be at least A0ðf 2ð1� ~y1

AÞÞ � 1:42. If, on
the other hand, if the social planner is satisfied with assuring 1� ~y2

A � 0:97 at least once every two periods, then the subsidy
can be smaller, from (18) we see that it is sufficient to choose the subsidy rate λ2ZA0ðf 2ð1� ~y2

AÞÞ � 1:11.
It is somehow surprising that λ2 is smaller than λ1, as the value of the second lower bound imposed is much larger than

the first one. The smaller value of λ2 is due to the fact the forest cover must be above ð1� ~y2
AÞ only once every two periods.

This suggests that the forest cover may present large oscillations along the optimal trajectory.
It is also interesting to note that if we take λ1 ¼ 1:42, to assure that the lower bound on forest cover (from the social

planner's problem) is satisfied in every time period, the value for ~y2
λ is zero, meaning that there is total forest cover at least

once every two periods. On the other hand, if we take λ2 ¼ 1:11 to assure that the minimal bound once every two periods is
satisfied, then the value of ~y1

λ is one, implying that there could be zero forest cover in some periods (at most once every two
time periods).

Finally, if the social planner wants to assure full forest cover in every period, she must offer a subsidy that ensures that ~y1
λ ¼ 1,

i.e., pþbW 0ð0Þ�bf 1½U0ðf 2Þþλ�o0 (see (15)), implying that λ must be larger than or equal 1=bf 1ðpþbW 0ð0ÞÞ�bU0ðf 2Þ � 2:07.
20 Salo and Tahvonen (2002) and Wan (1994) contain an analysis of the Mitra–Wan model for the special case of a dual aged forest (n¼2) which allows
for sharper theoretical results.
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6. Extensions

Our paper has not addressed the problem of characterization of steady states and their stability in situations where total
deforestation is not optimal; this remains an open question in the context of our general model. Our current analysis indicates
that in a simplified version of the model, where n¼2, a characterization of the transition dynamics and comparative dynamics
of important parameters, as in Dasgupta and Mitra (2011), may be possible.

More research is needed to examine how our conditions for deforestation are modified if the model is extended to allow
for other realistic features such as irreversibility of deforestation, soil erosion and uncertainty.

In particular, irreversibility arises when land under alternative use is rendered unsuitable for future reforesta-
tion. Whether or not such an irreversibility is relevant depends on the nature of alternative use as well as the composition
of the forest. It is easy to see that introduction of such irreversibility in our model reduces the set of feasible programs;
every program that meets the irreversibility constraint is also feasible in our model but the reverse is not true as
programs involving diversion of land from alternative use to forests are no longer admissible. This implies that if some
program is optimal in our model (where there is no irreversibility) and in addition, satisfies the irreversibility constraint,
then it must be optimal in the model with irreversibility. In particular, a program characterized by immediate deforestation
in our model involves no reversal of land use from alternative use to forestry and therefore continues to be feasible with
irreversibility. Therefore, the conditions under which deforestation is optimal in our model are also sufficient to ensure
that deforestation is optimal under irreversibility. However, with irreversibility, deforestation may be optimal under
weaker conditions. For instance, if the initial state is one where all land is dedicated to alternative use then the only
feasible program under full irreversibility involves deforestation. But (as we have shown) without irreversibility, if our
conditions for deforestation do not hold then from the same initial state it is optimal to sustain positive forest
cover infinitely often. Thus, introducing irreversibility in diversion of land to alternative use makes deforestation
more likely.21 However, this may be modified if there is uncertainty about future benefits of forest use and irreversibility
may create an option value for conservation of forests. Indeed, several previous studies (Arrow and Fisher, 1974; Henry,
1974) have shown that in the presence of irreversibility, uncertainty about the future can make depletion of irreplaceable
assets less likely. The study of deforestation under irreversibility and uncertainty remains an important topic for future
research.

Our analysis in this paper is carried out under the assumption that the total area of available land for forest
and non-forest use is fixed; this allows us to focus on the dynamic tradeoff between forest and non-forest use where
the dynamic value of having forest cover is endogenously determined through control of age distribution. However, in
many real world situations, diversion of land to alternative use reduces the total amount of land through soil
erosion. Intuitively, this should increase the incentive for forest conservation and make deforestation less likely.
Mathematically, introducing such a law of motion for the total area of available land makes the optimization problem
intrinsically more complicated than the one studied in this paper, but the insights it may provide makes it worth studying in
the future.
7. Conclusion

Deforestation is a complex social phenomenon. In this paper, we have tried to understand the broad economic and ecological
conditions under which deforestation may occur even though there is no failure of property rights and the forest is managed
effectively. Our analysis has been carried out in the context of a very well known economic model of optimal forest management
(the Mitra–Wan model) that we have extended to allow for benefits from standing forests (in addition to timber harvests) and
alternative use of land. Despite the fact that optimal paths in this class of models may be characterized by cycles and steady states
that are not globally stable, we obtain a very sharp characterization of deforestation. We show that if deforestation occurs from
any initial state then it must occur in finite time from every initial state. As a result, a “local” condition that simply rules out any
incentive to move away from a state of zero forest cover turns out to be necessary and sufficient for global deforestation. The
comparative statics of this condition clearly shows that factors that improve profitability of (or more generally the marginal
benefit from) harvesting timber such as an increase in price of timber (increase in demand) or reduction in the cost of harvesting
tend to promote conservation of forests. Similarly, an increase in the flow benefits from standing forests that are internalized by
forest management (for instance, as a consequence of public policy) make deforestation less likely. We also derive a precise
bound on forest cover that is relevant to situations where deforestation is not optimal. We demonstrate how our general results
can be used to study the wedge between private and social optimality of deforestation, and suggest a simple subsidy on standing
forests that can induce a private owner to conserve forests or maintain a minimal level of forest cover.

To the best of our knowledge, this is the first paper to attempt to derive analytical conditions for deforestation and in
doing so, it contributes to the general economic theory of extinction and conservation of natural resources.
21 Instead of full irreversibility, we can think of a situation where reforestation is possible at some cost. Then, a term representing the cost of conversion
of land from alternative use to forests must be included in the objective function. With partial irreversibility the perturbation analysis performed in the
proof of Lemma 1 can be done, with new terms appearing in Eqs. (5) and (6) whenever land is converted to forestry. This asymmetry breaks the
equivalence obtained in Proposition 1.
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Appendix A. Proofs
Proof of Lemma 1. We define the unitary vector ejA IRn such that ej ¼ 1 and ek¼0 for all ka j. Consider an alternative
program fbxsg1s ¼ 0 such thatbxtþ j ¼ xtþ jþϵej 8 j¼ 1;…; a:bxs ¼ xs else

In words, whenever ϵ40 (ϵ40), the alternative program is one where the area under alternative use is reduced (increased)
by ϵ at time period tþ1 and replanted to yield more (less) young forest next period. This modification of the young forest
area is let to propagate until age a at which point the consumption of forest of age a is modified. Of course, the area
under alternative use, can only be reduced if it is strictly positive along the periods involved, i.e., minj ¼ 1;…;afytþ jg40. On the
other hand, to increase the land under alternative use along the time periods tþ1;…; tþa, we decrease the harvest of age class a
at time tþa, hence we need ca;tþa40. In conclusion, the alternative program is feasible for �ca;tþaoϵo
minfytþ1; ytþ2;…; ytþag.
As fxtg1t ¼ 0 is optimal, the modification must give a smaller benefit, hence:X1

t ¼ 1

bt�1½UðctÞþWðytÞþSðxtÞ�px1;tþ1�Z
X1
t ¼ 1

bt�1½UðbctÞþWðbytÞþSðbxtÞ�pbx1;tþ1�

which is equivalent to

baUðctþaÞþ
Xa
j ¼ 1

bj½Wðytþ jÞþSðxtÞ��px1;tþ1

ZbaUðctþaþ f aϵÞþ
Xa
j ¼ 1

bj½Wðytþ j�ϵÞþSðxtþϵeaÞ��pðx1;tþ1þϵÞ;

and reordering we get

pϵþ
Xa
j ¼ 1

bj½Wðytþ jÞ�Wðytþ j�ϵÞ�

Zba½Uðctþaþ f aϵÞ�UðctþaÞ�þ
Xa
j ¼ 1

bj½SðxtþϵeaÞ�SðxtÞ� ð19Þ

If min
j ¼ 1…a

fytþ jg40 we can consider ϵ40. Dividing through by ϵ and taking the limit as ϵ-0þ , we obtain inequality (5).

If ca;tþa40 we can consider ϵo0. Dividing through by ϵo0 and taking the limit as ϵ-0� , we obtain inequality (6). □

Proof of Proposition 1. We see first that 1, 2, 3 and 4 are equivalent by showing that 1 ) 2 ) 3 ) 4 ) 1.
From the definitions of total deforestation and eventual deforestation it is evident that 1 ) 2.
Let us show that 2 ) 3. Let fxtg1t ¼ 0 be an optimal program characterized by eventual deforestation. As fytg-1, there exists

T such that yt40 for all tZT . Using Lemma 1, we have that (5) holds for all a and tZT . Observe that as fytg-1, fxa;tg-0 for
all a so that taking the limit as t-1 on both sides of the inequalities (5) and rearranging the terms we obtain (7).
We turn now to the proof that 3 ) 4. We want to show that under (7), it is optimal to never re-plant, i.e., for any x0AD,

the optimal policy is such that x1;t ¼ 0 for all t40. To show the optimality of such a policy, suppose to the contrary that there
exists x0AD such that there is an optimal program from this initial state where

x1;140:

The trees that are one year old at t¼1 must be harvested at some time period. Hence there is at least one value of a¼ 1;…;n
such that ca;a40. From Lemma 1, we have that (6) holds for t¼0 i.e.,

pþ
Xa
j ¼ 1

bjW 0ðyjÞrbaf aU
0ðcaÞþ

Xa
j ¼ 1

bjSjðxjÞ



A. Piazza, S. Roy / Journal of Economic Dynamics & Control 53 (2015) 15–2726
and using the strict concavity of U on a neighborhood of zero, A1 and A2 we have

pþ
Xa
j ¼ 1

bjW 0ð1Þobaf aU
0ð0Þþ

Xa
j ¼ 1

bjSjð0Þ

which violates (7).
Finally, to see that 4 ) 1, simply observe that if x1;t ¼ 0 for all t40 all forest is transferred to alternative use, after at most

n periods, and stays that way forever.
This completes the first part of the proof. The equivalence of the last two assertions follows almost directly. Indeed, it is

evident that 5 ) 6. It is also easy to see that 1 ) 5. Finally, if 6 holds then the program xt ¼ 0 and yt ¼ 1 8 t is optimal and
characterized by eventual deforestation, yielding that 6 ) 2. □

Remark 1. While it is very easy to see that the terms p=
P

jb
jf j and �baf aU

0ð0Þ in (12) are decreasing with b, proving that
ðð1�baÞ=ð1�bÞPjb

jf jÞbW 0ð1Þ is decreasing entails a more much complicated calculation and depends on f 1r f 2r⋯r f n.
Indeed, it can be proved that the derivative of this last term is

W 0 1ð Þ 1

ðPn�1
j ¼ 1 b

j�1f jÞ2
Xn�1

a ¼ 1

ðf a� f aþ1Þ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
r0

Xn�1

i ¼ a

ibi�1þ
Xa�1

j ¼ 1

ði� jÞbiþ j�1

0@ 1A
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Z0

2666664

3777775r0: □

Proof of Lemma 2. Let us denote by y¼ min
j ¼ 1;…;a

fytþ jg. If y¼0 the inequality holds trivially. If y40, we know thanks to (5)
that

0rpþ
Xa
j ¼ 1

bjW 0ðytþ jÞ�baf aU
0ðctþaÞ�

Xa
j ¼ 1

baSjðxtþ jÞ

rpþ
Xa
j ¼ 1

bjW 0ðytþ jÞ�baf aU
0 f m

Xn
a ¼ 1

xa;tþ j

 !
�
Xa
j ¼ 1

baSj em
Xn
a ¼ 1

xa;tþ j

 !

¼ pþ
Xa
j ¼ 1

bjW 0ðytþ jÞ�baf aU
0ðf mð1�ytþ jÞÞ�

Xa
j ¼ 1

baSjðemð1�ytþ jÞ

rpþ
Xa
j ¼ 1

bjW 0ðyÞ�baf aU
0ðf mð1�yÞÞ�

Xa
j ¼ 1

baSjðemð1�yÞÞ ¼ gaðyÞ:

This implies that gaðminj ¼ 1;…;afytþ jgÞZ0, and hence, minj ¼ 1;…;afytþ jgr ~ya. □
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