Strategic Behavior

Fall, 2022.
Problem Set 2.
Due: Thursday, September 15, In class
Textbook: Solve problems 1.3, 1.4, 1.7

Also work out the following problem:

1. Consider the tragedy of the commons with n identical farmers discussed in Section 1.2.D. Suppose that $n=2$ and that

$$
v(G)=\bar{G}-G
$$

where \bar{G} is the maximum number of goats that can be grazed on the green $\left(G_{\max }\right.$ in the textbook) and G is the total number of goats. Assume $\bar{G}>c$ where c is the cost of purchasing a goat. Derive the number of goats on the commons in the Nash equilibrium \& compare it to the joint profit maximizing (cooperative) solution.
[Hint for problem 1.4 in textbook: The profit π_{i} of each firm i depends only on its output q_{i} and the total output of all other $(n-1)$ firms (that can be denoted by Q_{-i}):

$$
\pi_{i}=\left[a-\left(q_{i}+Q_{-i}\right)\right] q_{i}-c q_{i}
$$

Find the best response or reaction of firm i to any Q_{-i} by differentiating π_{i} with respect to q_{i} and setting it equal to zero. Next, as all firms are symmetric you can guess that in Nash Equilibrium they will produce identical quantity, say q^{*}. So in the equation for the best response or reaction of firm i, you can set $q_{i}=q^{*}, Q_{-i}=(n-1) q^{*}$. Now, solve for q^{*}.]

