
A game is a formal representation of a situation in which individuals interact
in a setting of strategic interdependence.
Strategic interdependence
⇒each individual’s utility depends not only on his own actions but on the

actions chosen by other individuals.
What action is best or "optimal" for each agent may depend on what others

choose.
Therefore, decision making must take into account expectation of how other

players act.
Four basic elements of a game:
Players
- agents that interact
Rules
- who moves when, what do they know or observe at each point of move,

what they choose from....
Outcomes
- for each possible configuration of actions by all players what is the eventual

outcome of the interaction - may not be quantifiable
Payoffs
- the players’ preferences or utility function defined over possible outcomes.
Games may involve randomness (exogenous uncertainty or randomization in

choice of actions)
Players may need to evaluate probability distributions or lotteries over out-

comes.
Assume: each agent has preferences over all lotteries over outcomes of the

game that are representable by an expected utility function.
The payoff function of a player: her Bernoulli utility: {space of outcomes of

the game}→ R.
The actual utility levels are called payoffs.
Games may involve direct conflict of interest or objectives.
Ex. Matching pennies (zero sum game).
Games may involve no conflict of interest.
Ex. Pure coordination game.
Games may involve both conflict of interest and coordination problems.
Ex. Battle of Sexes.
Extensive Form Representation of a Game.
Captures
- who moves when (the sequencing of moves),
- what actions each player may choose from at each point of decision making
- what they know about other players and previous actions chosen by others

at each point where they have to move in the game,
- how each configuration of action choices by players through the game gen-

erates an outcome....
Finite games: finite number of players, finite number of possible actions,

finite number of moves.
Can use game tree to depict the extensive form.
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Elements of a game tree:
* Decision nodes (points at which players are required to make decisions):
- Initial Nodes
- Successor Nodes
* Each action at a decision node leads to a distinct branch of the tree.
* Terminal nodes: where game terminates and an outcome of the game is

realized.
* Payoff vectors at each terminal node indicating payoffs realized at that

outcome.
Exogenous Uncertainty in the play of the game: modeled as move of nature.
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Games of Perfect Information:
Games where at each point of decision, every player observe all prior deci-

sions made in course of the play of the game:
In terms of the game tree, at every decision node, players observe every

action chosen in prior decision nodes that lead up to that decision node - a
player knows exactly which decision node she is at.
Game of Imperfect Information.
May not observe action chosen by a previous mover in the game.
A player may not therefore know which decision node she is at.
She may know that is anywhere among a set of multiple nodes: Information

Set.
In games of imperfect information, players make decisions at information

sets consisting possibly of multiple nodes.
Singleton information set: Just one decision node.
Though actions chosen at an information set can lead to different outcomes

depending on which node the player is really at (i.e., what unobservable actions
were actually chosen in prior moves by other players)
- the player herself does not know which decision node she is at.
The set of actions she chooses from when she is at an information set must

be independent of the true decision node she happens to be in.
One Shot Simultaneous Move Game: is a game of imperfect information.
No player observes the action chosen by other players when she makes her

decision.
Assume: perfect recall.
Player does not forget what she observed at an earlier stage of the game.
Assume: Common knowledge of the structure of the game.
In an extensive form game, this implies all players know the extensive form.
Strategy:
A complete contingent plan or decision rule that specifies how the player will

act in each possible distinguishable circumstance in which she might be called
upon to move i.e., in each information set where she is may be possibly required
to make a choice.
Given the strategies of all players, the actual play of the game may not

require the players to face all contingencies that their strategy covers - all in-
formation sets may not be reached.
Definition. Let Hi denote the collection of information sets where player i

can possibly be required to make a decision, A the set of possible actions in the
game and C(H) ⊂ A the set of actions possible at an information set H.
A strategy for player i is a function si : Hi → A such that si(H) ∈ C(H)

for all H ∈ Hi.
A strategy profile in a game with I players is a vector s = (s1, ..., sI) where

si is the strategy chosen by player i.
Also denoted sometimes as (si, s−i) where s−i is a (I − 1) vector consisting

of a strategy choice for each player other than player i.
Normal Form Representation of a Game:
Every profile of strategies s = (s1, ..., sI) induces an outcome of the game:
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- a sequence of moves actually taken
⇒a probability distribution over terminal nodes of the game
⇒a probability distribution over payoff realizations of the game
⇒ expected payoff (utility) ui(s1, ..., sI) for each player i.
Definition: For a game with I players, the normal form representation ΓN

specifies for each player i a set of strategies Si (with si ∈ Si) and a payoff
function ui(s1, ..., sI) giving the VNM utility levels associated with the (possibly
random) outcomes arising from strategies (s1, ..., sI).
Formally, ΓN = [I, {Si}Ii=1, {ui(.)}Ii=1].
Normal form: no information about moves, order of moves, sequencing, how

the "strategy" of each player is composed or played or even what it means.
Can be seen as a simultaneous move game where players choose their strate-

gies (rather than actions at various decision nodes),
For any extensive form game, unique normal form representation.
Converse not true.
Players may randomize over actions at any decision node.
Choose probability distributions over deterministic or pure strategies.
Such randomized strategies are called mixed strategies.
Suppose that the Si, the (pure) strategy set of each player i is finite.
A mixed strategy by player i denoted by σi : Si → [0, 1] assigns to each pure

strategy si ∈ Si a probability σi(si) that it will be played where
P

si∈Si σi(si) =
1.
The set of all possible mixed strategies of player i is denoted by 4(Si).
Every profile of mixed strategies (one for each player) generates a probability

distribution over outcomes and payoffs of the game.
As players have VNM utility on the space of lotteries over outcomes, we

payoff to each player from a mixed strategy profile is the expected utility (or
payoff) generated.
Let S = S1 × S2 × ...× SI .
Let σ = (σ1, ...., σI) be a profile of mixed strategies where players randomize

independently (not correlated strategies).
Player i’s VNM utility or payoff from this mixed strategy profile, denoted

by ui(σ), is given by

ui(σ) =
X

(s1,...,sI)∈S
[σ1(s1)....σI(sI)]ui(s1, ..., sI)

If strategy set is not finite, each mixed strategy is captured by a probability
distribution function and the payoffs can be similarly defined.
Normal form game allowing for mixed strategies: denoted by ΓN = [I, {4(Si)}, {ui}]
In extensive form games, we can allow players to randomize over actions at

each information set where she is required to act.
Sometimes called behavior strategies.
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Simultaneous Move Games (Normal Form Games).
Consider normal form game ΓN = [I, {Si}Ii=1, {ui(.)}Ii=1] where we confine

players to use only pure strategies.
Prisoner’s Dilemma⎡⎣ 1 ↓, 2→ Not Confess Confess
Not Confess −2,−2 −10,−1
Confess −1,−10 −5,−5

⎤⎦
(Strictly) Dominant Strategy for each player: Confess.

Let S−i = S1×Si−1×Si+1...×SI denote the product of strategy sets of all
players other than player i.
Definition: A strategy si ∈ Si is a strictly dominant strategy for player i in

a game ΓN = [I, {Si}Ii=1, {ui(.)}Ii=1] if for all s0i 6= si, s
0
i ∈ Si, we have

ui(si, s−i) > ui(s
0
i, s−i) for all s−i ∈ S−i.

If a player has a strictly dominant strategy, it is individually optimal for the
player to play it irrespective of her belief about what other players play.
In fact, it is the unique individually optimal strategy.
If every player has a strictly dominant strategy, it is obvious that all players

should play this.
However, the outcome obtained as a result may be "collectively or jointly

suboptimal" or "Pareto inefficient" in the sense that all players could have been
better off if they had played according to a different strategy profile.
An example of how self interested individual behavior may not be collectively

good.
Reason: each player determines his or her "optimal" strategy by looking at

his or her own payoff ignoring the payoffs of other players.
"Externality".
It is rare for strictly dominant strategies to exist.
What strategy is optimal for a player often depends on what other players

play.
However, a rational player will never play a strategy that is dominated by

some other strategy (i.e., leads to strictly lower payoff no matter what other
players play).
Definition: A strategy si ∈ Si is a strictly dominated strategy for player i

in a game ΓN = [I, {Si}Ii=1, {ui(.)}Ii=1] if there exists another strategy s0i ∈ Si
such that

ui(s
0
i, s−i) > ui(si, s−i) for all s−i ∈ S−i.

In this case, we say s0i strictly dominates si.
A strictly dominated strategy should not be played by a rational player no

matter what he believes about the strategy choice of other players.
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⎡⎢⎢⎣
1 ↓, 2→ L R

U 1,−1 −1, 1
M −1, 1 1,−1
D −2, 5 −3, 2

⎤⎥⎥⎦
Both U and M strictly dominate D.
Note that if there is a strictly dominant strategy for a player , it strictly

dominates every other strategy of the player (and vice-versa).
Definition: A strategy si ∈ Si is a weakly dominated strategy for player i

in a game ΓN = [I, {Si}Ii=1, {ui(.)}Ii=1] if there exists another strategy s0i ∈ Si
such that

ui(s
0
i, s−i) ≥ ui(si, s−i) for all s−i ∈ S−i.

and further, there exists bs−i ∈ Si such that

ui(s
0
i, bs−i) > ui(si, bs−i).

In this case, we say s0i weakly dominates si.⎡⎢⎢⎣
1 ↓, 2→ L R

U 5, 1 4, 0
M 6, 0 3, 1
D 6, 4 4, 4

⎤⎥⎥⎦
D weakly dominates U and M.
If a strategy for a player weakly dominates every other strategy in the strat-

egy set of the player, we say it is a weakly dominant strategy.
Unlike a strictly dominated strategy, a rational player may play a weakly

dominated strategy (if he/she has certain kind of belief about what the other
players play).
Cannot be ruled out ex ante.
Rationality ⇒ Rules out strictly dominated strategies.
Common knowledge of rationality
⇒ Iterated Elimination of Strictly Dominated Strategies.
Prisoner’s Dilemma Modified (bias in favor of prisoner 1).⎡⎣ 1 ↓, 2→ Not Confess Confess
Not Confess 0,−2 −10,−1
Confess −1,−10 −5,−5

⎤⎦
1 ↓, 2→ L M R

T −1, 7 4, 5 4, 10
C 0, 11 1, 4 3, 2
B −1, 19 2, 10 1,−1

Order of deletion does not affect the set of strategies that survive iterated
elimination of strictly dominated strategies.
Can generalize strictly dominated and dominant strategy concepts to normal

form games that allow for mixed strategies in a straightforward way.⎡⎢⎢⎣
1 ↓, 2→ L R

U 10, 1 0, 4
M 4, 2 4, 3
D 0, 5 10, 2

⎤⎥⎥⎦
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Playing U and D with probability 1
2 each strictly dominates M.

RATIONALIZABILITY.
Pushes the idea of iterated deletion using common knowledge of rationality

to its fullest possible extent.
Definition: In game ΓN = [I, {∆(Si)}Ii=1, {ui(.)}Ii=1], strategy σi is a best

response for player i to his rival’ strategies σ−i if

ui(σi, σ−i) ≥ ui(σ
0
i, σ−i) for all σ

0
i ∈ ∆(Si).

Definition: Strategy σi is never a best response for player i if there is no
σ−i for which σi is a best response for player i.
i.e., there is no belief that player i may hold about his opponents’ strategy

choices that justifies choosing strategy σi.

A strictly dominated strategy is never a best response.

For two player games, a strategy is never a best response if and only if it is
strictly dominated.
In games of more than two players there can be (mixed) strategies that are

not strictly dominated but are never a best response.
Rationalizable Strategies (Bernheim & Pearce, 1984):
Definition: In game ΓN = [I, {∆(Si)}Ii=1, {ui(.)}Ii=1], the strategies in ∆(Si)

that survive iterated elimination of strategies that are never a best response are
known as player i’s rationalizable strategies.
Set of rationalizable strategies ⊂ Set of strategies that survive iterated elim-

ination of strictly dominated strategies.⎡⎢⎢⎢⎢⎣
1 ↓, 2→ b1 b2 b3 b4

a1 0, 7 2, 5 7, 0 0, 1
a2 5, 2 3, 3 5, 2 0, 1
a3 7, 0 2, 5 0, 7 0, 1
a4 0, 0 0,−2 0, 0 10,−1

⎤⎥⎥⎥⎥⎦
b4 is never a best response as it is strictly dominated by a strategy that plays

b1 and b3 with probability 1
2 each.

After eliminating b4, in the remaining game a4 is strictly dominated by a2.
In the remaining game, every pure strategy is a best response to some other

pure strategy.
Set of rationalizable pure strategies for player 1 is {a1, a2, a3}
Set of rationalizable pure strategies for player 2 is {b1, b2, b3}
For each rationalizable strategy, one can construct a valid chain of justifica-

tion for choosing to play this strategy.
For example, player 1 can justify playing a2 by the belief that player 2 will

play b2 and player 1 can justify this belief by believing that player 2 believes
that player 1 will play a2 which can be justified by the belief that player 2 thinks
that player 1 thinks that player 2 will play b2....
Infinite chain of justification: (a2, b2, a2, b2, ....)
Chain does not break down.
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Another chain:
(a1, b3, a3, b1, a1, b3, a3, b1, a1...)
Cannot justify playing a4 (which is not a rationalizable strategy) with an

infinite chain of justification.
Nash Equilibrium.
Consider normal form game ΓN = [I, {Si}, {ui}] where players restrict them-

selves to pure strategies.

Definition 1 A strategy profile s∗ = (s∗1, s∗2, ..., s∗I) ∈ S constitutes a Nash
Equilibrium (NE) if for every i = 1, ...I,

ui(s
∗
i , s
∗
−i) ≥ ui(si, s

∗
−i)

for all si ∈ Si.

Each player’s strategy is a best response to the strategies actually played by
rivals.

s∗i ∈ bi(s
∗
−i), i = 1, ...I

where bi(s∗−i) is the best-response (or best reply or "reaction") correspondence
defined by

bi(s
∗
−i) = {si ∈ Si : sisolves max

s0i∈Si
ui(s

0
i, s
∗
−i)}.

*No player has a (strict) incentive to unilaterally deviate from playing ac-
cording to strategy profile s∗ (does not rule out gainful deviation by a coalition
of multiple players).In a NE, players play rationally holding correct conjectures
(or forecasts) of rivals’ play.
Therefore, NE strategies are rationalizable.
NE: stronger than rationalizability which only requires the players play ra-

tionally given some reasonable conjecture about rivals play (i.e., those that can
be similarly justified).
Example:⎡⎢⎢⎣

b1 b2 b3
a1 0, 7 2, 5 7, 0
a2 5, 2 3, 3 5, 2
a3 7, 0 2, 5 0, 7

⎤⎥⎥⎦
Every pair of pure strategies (ai, bj) is a rationalizable - every strategy is a

best response to some strategy.
However, there is a unique NE: (a2, b2).
* Let N denote the set of NE strategy profiles,
R the set of rationalizable strategy profiles,
IED the set of strategy profiles that survive iterated elimination of strictly

dominated strategies and
U the set of strategy profiles consisting of strategies that are strictly undom-

inated.
Then,

N ⊂ R ⊂ IED ⊂ U.
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The concept of NE is based on the concept of mutually correct expectations.
Quite often, there can be multiple NE.
Coordination problems.
Example: Coordination game.⎡⎣ L R
U 100, 100 0, 0
D 0, 0 1000, 1000

⎤⎦
The two NE are Pareto-ranked (both players better off in (D,R) compared

to (U,L).
Example: (Pure coordination game)⎡⎣ L R
U 100, 100 0, 0
D 0, 0 100, 100

⎤⎦
Example: Battle of Sexes⎡⎣ Opera Game
Opera 100, 1000 0, 50
Game 50, 0 1000, 100

⎤⎦
Example: Cake eating.
A cake is to be divided among two players.
Players 1 and 2 simultaneously choose the shares (s1, s2), 0 ≤ si ≤ 1, of the

cake they demand.
The payoff of each player i is the share of the cake obtained be her and is

given by:

xi = si, if si + sj ≤ 1,
= 0, if si + sj > 1.

Set of NE = {(s1, s2) : s1 + s2 = 1, 0 ≤ si ≤ 1, i = 1, 2}
Continuum of NE. Conflict of objectives across NE.
Why should we expect conjectures to be correct?
Certainly not a necessary consequence of rationality or common knowledge

of rationality and payoffs.
* If there is a unique predicted outcome for a game (a unique obvious way

to play the game), then it must be a Nash equilibrium.
* If certain outcomes are focal (Schelling) for cultural or other reasons (hav-

ing to do with information not contained within the description of the game),
then such an outcome can be a prediction only if it is Nash equilibrium.
* If players make a non-binding agreement prior to play about how they are

going to play the game, then such an agreement is credible only if it is a Nash
equilibrium (the pre-game communication makes the agreement focal).
*Stable social convention (norm): If the game is played repeatedly, then

some stable social convention about how to play the game may emerge (a limit
of some dynamic adjustment process); such a stable social convention or norm
must be a NE.
Mixed Strategy Nash Equilibrium.
Consider the normal form game ΓN = [I, {∆(Si)}, {ui}]
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Definition 2 A strategy profile σ∗ = (σ∗1, σ
∗
2, ..., σ

∗
I) ∈

IY
i=1

∆(Si) constitutes a

Nash Equilibrium (NE) if for every i = 1, ...I,

ui(σ
∗
i , σ
∗
−i) ≥ ui(σi, σ

∗
−i)

for all σi ∈ ∆(Si).
Example (Matching Pennies)⎡⎣ H T
H +1,−1 −1,+1
T −1,+1 +1,−1

⎤⎦
There is no NE in pure strategies.
Each player playing H and T with probability 1

2 each constitutes a mixed
strategy NE.
Given this strategy of rival, each player indifferent between playing H or T.
In any mixed strategy NE, each player is indifferent between pure strategies

that she plays with strictly positive probability
i.e., given the mixed strategies played by other players, all such pure strate-

gies must yield her exactly her the same expected utility or payoff (which would
also be her NE payoff).
Further, no pure strategy that is played with probability zero by a player

can yield strictly higher payoff than the payoff from the pure strategies that are
played with strictly positive probability.
[In case the strategy set is not finite, the above must be true for almost every

strategy in the support of the mixed strategy of each player].
The following proposition is written for the case of finite strategy sets and

shows that the above is both necessary as well as sufficient for a mixed strategy
NE:
Proposition. Assume Si is finite. Let S

+
i ⊂ Si denote the set of pure

strategies that player i plays with strictly positive probability in a mixed strat-

egy profile σ∗ = (σ∗1, ..., σ
∗
I) ∈

IY
i=1

∆(Si). Strategy profile σ∗ is a NE if and only

if for all i = 1, ...I

(i) ui(si, σ
∗
−i) = ui(s

0
i, σ
∗
−i),∀si, s0i ∈ S+i

(ii) ui(si, σ
∗
−i) ≥ ui(s

0
i, σ
∗
−i),∀si ∈ S+i and ∀s0i ∈ Si − S+i .

So to test whether a given mixed strategy profile is a NE we only need to
test that all pure strategies played with strictly positive probability yield equal
payoffs for each player and that no player can do better by playing some other
pure strategy.
Example:⎡⎣ L R
U 100, 100 0, 0
D 0, 0 1000, 1000

⎤⎦
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Suppose player 1 plays U and D with probability p and 1− p, respectively.
For player 2, playing L yields expected payoff 100p and playing R yields

1000(1−p).These two expected payoffs are equal only if p = 1
11 . By a symmetric

argument, player 1 is indifferent between U and D if and only if player 2 plays
L and R with probabilities 1

11 and
10
11 , respectively.

Thus, these mixed strategies constitute a NE.
Existence of NE:
* Every normal form game where the strategy sets of all players are finite

has a mixed strategy NE.
* Every normal form game where:
(1) the strategy set of each player is a nonempty, convex and compact subset

of Rn
(2) payoff function ui(s1, ...sI) of each player is continuous in (s1, ...sI) and

quasi-concave in si
has a NE in pure strategies.
If quasi-concavity of ui fails but continuity holds, there is mixed strategy

NE.
Dasgupta and Maskin (1986).
Games of Incomplete Information: Bayesian Nash Equilibrium.
Games analyzed thus far: games of complete information (assumes common

knowledge of players, payoffs, rules of the game etc.)
Games of incomplete information: players may not know other players’ pref-

erences over outcomes i.e. their payoff (or utility) function.
Harsanyi approach: imagine each player’s preference structure or payoff

function is randomly chosen by nature at the beginning of the game according
to some commonly known probability distribution.
The actual realization of nature’s draw is only observed by the player (private

information) while others play the game only knowing the probability distribu-
tion used by nature.
This captures uncertainty about the preferences of other players.
More specifically, each possible preference structure or payoff function of a

player is defined as a possible type of the player.
Nature (player 0) first chooses the realization of a random variable that

determines the type of every player.
The realized type of player i is observed only by player i.
Example.
Consider prisoner’s dilemma where player 1 is the DA’s brother (this is

known by both players).
The DA has some discretion and so if player 1 and 2 keep mum, he can let

player 1 go free.
Otherwise, the punishments are same as in the usual prisoner’s dilemma.
Suppose further that player 2 may either be purely selfish (type 1) or someone

who hates to rat on his buddy (type 2).
In the latter case, player 2 gets a psychological dis-utility equivalent to 6

additional months in prison if he confesses.
Player 1 is purely selfish.
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It is commonly known that player 2 is selfish with probability μ ∈ [0, 1].
Of course, player 2 knows whether or not he is selfish.
This can be formalized as the following extensive form game:
first nature chooses type of player 2 from a probability distribution that

assigns probability μ to type 1 and probability 1− μ to type 2.
This move of nature is not observed by player 1 but observed by player 2;
this determines their information sets.
Players than simultaneously choose whether to confess (C) or not confess

(NC).
If player 2 is chosen by nature to be of type 1, the payoffs from this latter

simultaneous move game are⎡⎣ NC C
NC 0,−2 −10,−1
C −1,−10 −5,−5

⎤⎦
while if player 2 is chosen by nature to be of type 2, then the payoffs are:⎡⎣ NC C
NC 0,−2 −10,−7
C −1,−10 −5,−11

⎤⎦ .
Note player 2 will know which payoff matrix is relevant when he chooses

whether or not to confess because he will know his preference, but player 1 will
not.
A pure strategy for player 2 must specify what he is going to do for each

choice by nature of his type (complete contingent plan)- his pure strategy set is
{(C if type 1, C if type 2), (C if type 1, NC if type 2), (NC if type 1, C if type
2), (NC if type 1, NC if type 2)}.
Note that though we know that player 2 actually knows his type, to play

this game it is important for player 1 to imagine how player 2 would play the
game if he was of each possible type and to choose rationally accordingly.
This is the basic reason behind the Harsanyi formulation.
Let Θi be the set of all possible types of player i and Θ = Θ1 × ...×ΘI .
The type of player i denoted by θi ∈ Θi is a random variable chosen by

nature whose realization is observed only by player i.
The joint probability distribution of the types of all players is given by

F (θ1, θ2, ....θI) which is assumed to be common knowledge.
Note that the random variables θ1, θ2, ....θI need not be independent.
Each player i has a payoff function ui(s1, ..sI , θi).
Here, si ∈ Si,the set of all actions that can be chosen by player i.
The Bayesian game is summarized by [I, {Si}, {ui},Θ, F ].
Pure strategy of player i is function or decision rule si(θi): Θi → Si.
Let Σi be the set of all such functions - the set of pure strategies of player i.
Player i’s expected payoff from any profile of pure strategies (s1(.), ....sI(.))

is then given by

eui(s1(.), ....sI(.))
= Eθ[ui(s1(θ1), ....sI(θI), θi]

12



A Nash equilibrium of the "reduced" normal form game [I, {Σi}, {eui}] is called
a Bayesian-Nash equilibrium.

Definition 3 A (pure strategy) Bayesian Nash equilibrium (BNE) for the Bayesian
game [I, {Si}, {ui},Θ, F ] is a profile of decision rules (s1(.), ....sI(.)) that con-
stitutes a Nash equilibrium of the game ΓN = [I, {Σi}, {eui}] i.e., for every
i = 1, ...I, eui(si(.), s−i(.)) ≥ eui(s0i(.), s−i(.)),∀s0i(.) ∈ Σi.
One implication of this:
for each possible type that he may have, in a BNE, a player plays an action

that is a best response to the conditional distribution of his opponents’ strategies
.

Proposition 4 A profile of decision rules (s1(.), ....sI(.)) is a BNE if, and only
if, for all i and all θi ∈ Θi occurring with positive probability (or more generally,
almost every θi ∈ Θi)

Eθ−i [ui(si(θi), s−i(θ−i), θi | θi] ≥
Eθ−i [ui(s

0
i, s−i(θ−i), θi | θi]

for all s0i ∈ Si where Eθ−i is the conditional expectation taken over all possible
realizations of other player’s’ types (conditional on player i’s types).

We can think of each player of each type as being a distinct player directly
playing an action from Si and maximizing his payoff given the conditional
probability distribution over the strategy choices of rivals.
Earlier example:

Nature•
μ . & 1− μ⎡⎣ NC C

NC 0,−2 −10,−1
C −1,−10 −5,−5

⎤⎦ ⎡⎣ NC C
NC 0,−2 −10,−7
C −1,−10 −5,−11

⎤⎦
BNE:
Player 2 plays (C if type 1, NC if type 2).
Player 1 plays NC (C) if μ ≤ (≥) 16 .
Example.
First price, sealed bid auction with private independent valuations.
2 bidders i = 1, 2.
Valuation of bidder i : vi - known only by bidder i.
Valuations are independently and uniformly distributed on [0, 1].
Net utility of a bidder with valuation vi : vi− p,if he gets the good and pays

price p; otherwise, its zero.
Bidder i’s bid: bi ≥ 0.
Both bidders simultaneously submit bids and highest bidder wins the good

and pays the price she bids.
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In case of tie, each bidder wins with probability 1
2 .

Bayesian game:
Type of a player i: vi.
Types drawn independently by nature from the uniform distribution on [0, 1].
Action space of each player of each type: R+.
Payoff of player i :

ui(b1, b2; vi) = vi − bi, if bi > bj

=
vi − bi
2

, if bi = bj

= 0, if bi < bj .

Strategy of player i : bi(vi).
BNE:
Given bj(vj), for each vi ∈ [0, 1], bi(vi) solves

max
bi
[(vi − bi) Pr{bi > bj(vj)}+ 1

2
(vi − bi) Pr{bi = bj(vj)}]. (1)

Claim: bi(vi) = vi
2 , i = 1, 2,constitutes a BNE.

To see this, suppose that bj(vj) =
vj
2 .

Then, bj is uniformly distributed on [0, 12 ].
In particular, for any bi,

Pr{bi = bj(vj)} = Pr{bi = vj
2
} = 0.

Also, for any bi ≥ 0,

Pr{bi > bj(vj)} = Pr{bi > vj
2
}

= Pr{vj < 2bi}
= min{1, 2bi}.

Thus, the maximand in (1), reduces to

[(vi − bi)min{1, 2bi}]
= vi − bi, if bi ≥ 1

2

= 2(vi − bi)bi if bi ≤ 1
2
.

Check that for each type vi ∈ [0, 1],the optimal solution is bi = vi
2 (which is also≤ 1

2).
In fact, this is the unique BNE where the strategy of each player is linear in

valuation.
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