HOMEWORK \# 3
BIOL/CHEM 5312
due Friday, February 20, 2015
van Holde et al., Chapter 3, p.161-163, problems 3.1, 3.2ab, 3.3, 3.6, 3.8, 3.9
3.0 Using the Base-stacking energies of Table 3.10, determine the most stable dinucleotide triplet (a duplex of 3 base pairs). What is the least stable triplet?

Notes:

3.1 use $K \varepsilon_{o}=4 \pi 8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~J}^{-1} \mathrm{~m}^{-1}$ to evaluate D (lect 6 , page 17)
3.2 number the dipoles 1 and $2, r$ is the vector from the center of 1 to the center of 2 . Angles are determined by rotating one vector until it is parallel with another (in the same direction)
3.3 hint is in the book (Answer to 3.3 b is -15.0)
3.6 use Table 1.7 to estimate separation of charges
3.8 use Table 3.15. In the Table in the problem, N should be called a base atom. Those values are the surface areas for all atoms of a particular type. (Recommendation: use a spread sheet to calculate)
3.9 In actual proteins $|r|$ appears to be around $0.5-0.6 \mathrm{~nm}$, but for this problem you can use $|r|=0.5 \mathrm{~nm}$ To get the length of μ use the length of the CO bond and the length of the NHO hydrogen bond. Both can be found in Ch. 1. Assume the dipoles are aligned $(\theta=0)$ (My answers are $-169 \mathrm{~J} / \mathrm{mol}$ and $-3.79 \mathrm{~kJ} / \mathrm{mol}$ The answer in my book is clearly wrong, since it gives the same value for each, and they certainly must differ by the ratio of the dielectric constants)

