
Math 2343: Introduction Separable ODEs Linear, non-homogeneous Graphical analysis Numerical Approximation Applications

Math 3313: Differential Equations
First-order ordinary differential equations

Thomas W. Carr

Department of Mathematics
Southern Methodist University

Dallas, TX



Math 2343: Introduction Separable ODEs Linear, non-homogeneous Graphical analysis Numerical Approximation Applications

Outline

Math 2343: Introduction

Separable ODEs

Linear, non-homogeneous

Graphical analysis

Numerical Approximation

Applications



Math 2343: Introduction Separable ODEs Linear, non-homogeneous Graphical analysis Numerical Approximation Applications

Outline

Math 2343: Introduction

Separable ODEs

Linear, non-homogeneous

Graphical analysis

Numerical Approximation

Applications



Math 2343: Introduction Separable ODEs Linear, non-homogeneous Graphical analysis Numerical Approximation Applications

What’s it about?

The change in x(t) w/rt t is given by the function f (x , t).

dx(t)
dt

= f (x , t) (1)

Goals of this class.
• What is x(t)?

Solution methods?
• Where did the differential equation come from?

Modeling
• Interpretation

What does the solution x(t) say about the “physics”?
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Some terms

Ordinary Differential Equation (ODE)
Has only 1 independent variable t .

dx
dt

= f (x , t) (2)

Partial Differential Equation (PDE)
Has only 2 or more independent variables (ex. time & space).

∂x
∂t

=
∂2x
∂z2 (Diffusion) (3)

1st order ODE→ highest derivative is 1. dx
dt = f (x , t)

2nd order ODE→ highest derivative is 2. d2x
dt2 = f (x , dx

dt , t)
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Linear vs. Nonlinear

Linear nth order

an(t)
dnx
dtn + an−1(t)

dn−1x
dtn−1 + . . .+ a1(t)

dx
dt

+ a0(t)x = f (t) (4)

x , dx
dt , . . . dnx

dtn appear linearly.
No x2, sin(x), x dx

dt , . . .

t doesn’t matter. t2, sin(t), . . . are OK.

Nonlinear
dx
dt

= sin(x),
(

dx
dt

)2

+ x
dx
dt

= 2.

sin(x), ( dx
dt )

2, x dx
dt are nonlinear functions of x .
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Solutions must satisfy the ODE

ex. Is x(t) = ce−3t a solution to

dx
dt

= −3x ? (5)

Substitute and check!

ex. Is x(t) = c1 sin2t + c2 cos2t a solution to

d2x
dt2 + 4x = 0? (6)

Substitute and check!

Make it a habit to check!
Find x then substitute.
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Explicit vs. Implicit

Explicit: when we can solve for x = F (t).

Implicit: Left with G(x(t), t) = 0.

You don’t have x = something. Instead, it’s defined implicitly by the
function G.

ex. Let G(x , t) = x3 + x − t + 1
t + c. Show that G = 0 is a solution to

t2 dx
dt

=
t2 + 1

3x2 + 1
(7)

Substitute and check!
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Solving implies "integrating"
ex.

dx
dt

= sin t (1st order, linear) (8)

What function x has derivative sin t?

x(t) =
∫

sin t dt + c = − cos t + c.

ex.

d3x
dt3 = 1 (3rd order, linear) (9)

d2x
dt2 = t + c1

dx
dt

=
1
2

t2 + c1t + c2

x =
1
6

t3 +
c1

2
t2 + c2t + c3.

Every time we integrate we pick up a constant.
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The constants and Initial Conditions

The solution to an nth order ODE will have n constants.
Specify the cj with n initial conditions (ICs)

ex.
dx
dt

= cos γt AND x(t =
π

2γ
) = 3. (10)

Integrate and solve for c!

The general solution: x(t) = 1
γ sin γt + c

The solution to the initial value problem: x(t) = 1
γ sin γt + (3− 1

γ )

ex.
dx
dt

= tet2
, x(0) = 1. (11)

Integrate (definite vs. indefinite integration)
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What is "separable"?
Given

dx
dt

= f (t) Integrate

dx
dt

= f (x , t) Need other methods (if at all doable)

dx
dt

= f (x , t) = g(x)h(t) SEPARABLE

f (x , t) is the product of a function of x (g) with a function of t (h).

ex.

f (x , t) = tx → g(x) = x , h(t) = t
f (x , t) = x2et → g(x) = x2, h(t) = et

f (x , t) = sin(xt) → ???
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Separation of variables

1. Given:

dx
dt

= g(x)h(t)

2. Separate x and t :

1
g(x)

dx
dt

= h(t)

3. Relabel 1/g = p(x):

p(x)
dx
dt

= h(t)

4. Integrate w/rt t∫
p(x)

dx
dt

dt =
∫

h(t)dt

5. Integrate w/ substitution

Let u = x(t)⇒
du
dt

=
dx
dt
⇒ du =

dx
dt

dt

∫
p(u)du =

∫
h(t)dt

antider of p(u)|u=x = antider of h(t)

May or may not be able to integrate.
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Separation: examples

ex. Find the general solution to

dx
dt

= −6tx (12)

Separate and solve.

ex.

dx
dt

= (x − 1)2 sin t (13)

Separate and solve.

ex. Find the solution to the initial value prob-
lems below.

t2 dx
dt

=
t2 + 1

3x2 + 1
, x(1) = 2. (14)

Separate and solve.

ex.
dx
dt

= tet2+x2
, x(t0) = x0 (15)

Separate and solve.
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Linear, constant coefficient

Special case of separable ODE

dx
dt

= kx (16)

Linear: dx
dt and x are linear functions of x .

Constant coefficient: 1 and k .

1
x

dx = kdt

ln x = kt + c
x = ekt+c

x = ecekt

x = c̃ekt

Linear, constant-coefficient ODEs always have ert as solutions.
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Linear, constant coefficient: examples

ex.
dx
dt

= 5x (17)

Substitute and find r .

ex.
dx
dt
− kx = 0 (18)

Substitute and find r .
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What is "linear, nonhomogenous"?
Given

dx
dt

= f (t) Integrate

dx
dt

= f (x , t) = g(x)h(t) separate

dx
dt

= f (x , t) = kx Const. coeff. → ert

Now
dx
dt

= f (x , t) ⇒ dx
dt

+ p(t)x = f (t) (19)

p(t): variable coefficient. Function of t .
f (t): nonhomogenous/forcing term. Function of t .
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Some properties

The f (t) prevents separation.

1
x

dx
dt

= −p(t) +
f (t)
x

The solution to a linear nth order nonhomog. ODE has 2 parts.

x(t) = xh(t) + xp(t) = homogeneous sol. + particular sol.

xh :
dxh

dt
+ p(t)xh = 0 (f = 0).

xp :
dxp

dt
+ p(t)xp = f (t)

Check. Let x = xh + xp. Substitute into original. Use the above to
cancel terms.
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Integrating factor method

Put ODE into standard form

Step 1:
dx
dt

+ p(t)x = f (t)

Multiply by I.F. u(t) (unknown)

u(t)
dx
dt

+ u(t)p(t)x = u(t)f (t)

Choose u such that

u(t)p(t) =
du
dt

Make replacement

u(t)
dx
dt

+
du
dt

x(t) = u(t)f (t)

This is the result of product rule.

d
dt

(ux) = u
dx
dt

+
du
dt

x

Make replacement

Step 3:
d
dt

(u x) = uf

Integrate

Step 4:
∫

d
dt

(u x) dt =
∫

u f dt

u x =

∫
u fds + c

Solve for x .

The method:
Choose u so we can integrate.

du
dt

= p(t)u.

1
u

du = p(t)dt

Step 2: u = e
∫

p(t)dt
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A first example

ex.
dx
dt

= 3x + e2t , x(0) = 5

Apply IF method.

Summary of IF Method
1. Standard form: dx

dt + p(t)x = f (t)

2. If is: u = e
∫

p(t)dt
3. ODE becomes:

∫ d
dt (u x) dt =

∫
u f dt

4. Integrate

Turn something you didn’t know how to solve into something you do (integration). Price
is needing to find u(t).



Math 2343: Introduction Separable ODEs Linear, non-homogeneous Graphical analysis Numerical Approximation Applications

Some more IF examples

ex.
t2 dx

dt
+ tx = t sin t , x(1) = 2 (20)

Apply IF method.

ex.
dx
dt

+ t4x = 1 (21)

Apply IF method.
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Online analysis tools

• GeoGebra Slope Field Plotter:
www.geogebra.org/m/W7dAdgqc

• Blufton Univ. Slope and Direction Fields:
bluffton.edu/homepages/facstaff/nesterd/java/slopefields.html

• Interactive Differential Equations:
www.aw-bc.com/ide/

First, some board work.
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Direction Fields

dx
dt

= t2

• f (t , x) = t2 Non-negative.
x(t) never decreases.

• f (t , x) = 0? t2 = 0?⇒ t = 0.
When t = 0, x(t) is horizontal.

• f (t , x) = 1?: t2 = 1?⇒ t = ±1.
When t = ±1, x(t) has slope 1.

• Integrate to find solution:
x(t) = 1

3 t3 + c.

Note missing axis labels!
(Blufton’s Slope and Dir. Fields tool)
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Direction Fields

dx
dt

= x2 − 1

• If x < −1 or x > 1, then
f > 0 so x increases.

• If −1 < x < 1, then
f < 0 so x decreases.

• If x = ±1, then
f = 0 so x is at Equilibrium.

• Solve by Sep of Var
x(t) = 1+ce2t

1−ce2t

• Singular when 1− ce2t = 0.
Finite time blowup. Note missing axis labels!

(Blufton’s Slope and Dir. Fields tool)
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Autonomous ODEs & Equilibrium
First, some board work.

0 1 2 3 4 5 6 7 8 9 10

−3

−2

−1

0

1

2

3

t

x

x ’ = x
2
 − 1
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Autonomous ODEs: example 2
First, some board work.

0 1 2 3 4 5 6 7 8 9 10

−3

−2

−1

0

1

2

3

t

x

x ’ = x − x
3
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Autonomous ODEs: example 3

0 1 2 3 4 5 6 7 8 9 10

−10

−8

−6

−4

−2

0

2

4

6

8

10

t

x

x ’ = sin(x)
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Existence & Uniqueness
Before we start solving....

• How do we know if there is a solution to find? Existence.
• If we find a solution, how do we know if it is the only one?

Uniqueness.
ex.
ODE: dx

dt = −x ⇒ x(t) = ce−t : (a family of solution curves)
IC: x(t0) = x0 ⇒ c = x0et0 ⇒ x(t) = x0et0−t

(a specific curve passing through a specific point (t0, x0))

Every point (t , x) has one and only one solution curve passing
through it.

• If no solution curve: Does not exist.
• If more than one: Not unique.
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E& U: Theorem

Given dx
dt = f (x , t). If both f (x , t) and ∂f

∂x (x , t) are continuous in a
region containing (t0, x0), then there exists a unique solution through
(t0, x0). (f and its partial with respect to x must be continuous.)

ex.
dx
dt

=
1
t

(22)

f is discontinuous at t = 0 so theorem fails at t = 0.
Solve: x(t) = ln |t |+ c. Undefined at t = 0.

For t 6= 0, where the theorem is satisfied, there is one and only one
solution through each point.
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E& U: Example

ex.
dx
dt

=
x
t

(23)

Examine f and ∂f/∂x . Then solve.

ex.
dx
dt

=
√

x2 − t2 (24)

f (x , t) must be real. Simulate.

ex.
dx
dt

= x2/3 vs.
dx
dt

= x4/3 (25)

Simulate and compare.
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Analysis vs. Numerics/Simulation

Given
dx
dt

= f (x , t), x(t0) = x0

• What if we can’t separate, can’t use an I.F., isn’t Exact (see text)?
• What if the problem is too complicated and an analytical solution

is not possible? Which is MOST!
• Use computer simulations to find a numerical approximation.

But computers can’t do "calculus". How do we approximate the
problem so that computers can operate on it?
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Linear approximation

Given a curve x(t). Suppose you know a point on the curve (t0, x0) The linear
approximation (tangent line) is

xl (t)− x0 = m(t − t0), where m =
dx
dt

(t0). (26)

xl (t) = x0 +
dx
dt

(t0)(t − t0)

Use the line as an approximation to the
curve. At t = t1:

• True value is x(t1).

• Approximate value is xl (t1) = x1.

• Error: e1 = x(t1)− x1

If the step size h = t1 − t0 is not too big, we expect the error to not be too big.
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Euler’s method
Given:

dx
dt

= f (x , t), x(t0) = x0

To get x(t1) use the approximation x1:

x1 = x0 +
dx
dt

(t0)(t1 − t0)

The derivative is given by the ODE:

x1 = x0 + f (x0, t0)(t1 − t0)

Go to a new point when t = t2.
Use the linear approx. again.

x2 = x1 + f (x1, t1)(t2 − t1)

Repeat, repeat, . . .

xn+1 = xn + f (xn, tn)(tn+1 − tn)

If fixed stepsize: h = tn+1 − tn.

xn+1 = xn + h fn (27)

• f is given by the ODE, so known.

• You pick the times tn, so known.

• The xn are repeated approxs.

• Approx. based on approx!

While x0 = x(t0), x1 6= x(t1).

Error Euler’s method is "Order h"

|en| = |x(tn)− xn| = Mh
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Euler examples

For each problem below:
• Solve analytically then evaluate at the specified points.
• Solve numerically using Euler’s method.

ex.
dx
dt

= 5 + 2x , x(0) = 0, t = 0, 0.1, 0.2, 0.3

Compare analytical and numerical solutions.

ex.
dx
dt

= 3x2, x(0) = 1, t = 0, 0.2, 0.4, 0.6

Compare analytical and numerical solutions.
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Issues

• To go long times, need more steps. Error can accumulate.

• To reduce error, reduce the stepsize h. Now computer takes a long time.

• Perhaps better methods. Instead of using linear (tangent) approx, use quadratic
approx, or polynomial approx, of weighted averages of derivatives, or . . . .

• Implement error "correction." Take a step, estimate error, devise a scheme to
eliminate the error.

• Better methods and error correction require more work by the computer. Now the
computer takes more time.

• Buy a faster computer.

• If you don’t have an analytical solution to compare against, how do you know the
numerical method gives a correct result? What is the numerical solution
converging to?

• Issues, caveats, issues, caveats, issues,. . .

• A deep knowledge of these issues and solutions, i.e., the fields of Scientific
Computer and Numerical Analysis, gets you jobs.
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euler.m

dx
dt = 5 + 2x, x(0) = 0

Default: h = 0.1, N = 100, tf = 10.
Change h = 0.2 ⇒ tf = 20.

Exp. growing solution gets large.
Change h = 0.1, N = 10 for better view.
Change h = 0.2, N = 5.

Can see tangent lines.
Change h = 0.3, N = 4.
Note:

• When h = 0.1, x(1) ≈ 13.

• When h = 0.3, x(1) ≈ 10.

• Which is more accurate?
x(1) = − 5

2 + 5
2 e2 = 15.9 . . ..

Change h = 0.01, N = 100.

Very accurate but more steps. (slow?)

dx
dt = 5 − 2x, x(0) = 0

What do we expect? Always ask yourself,
what do you expect?

Default: h = 0.1, N = 100, tf = 10.
Goes to steady state at 5

2 .
Change h = 0.2.
Change h = 0.5. Not smooth.
Change h = 0.6. Overshoot.
Change h = 0.8. Oscillations.
Change h = 1.0. UNSTABLE!

• Accuracy issues.

• Stability issues.

• We can do better than
Euler.

• Different methods
have different
advantages and
disadvantages.

• In matlab, ode23 and
ode45 are good
all-purpose solvers.

• Interested in details?
MATH 3315
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Modeling process

Given some problem to solve.
• May be from science,

engineering, economics,
finance,. . .

Model (describe) the problem with a dif-
ferential equation.

• This can be quite difficult and
time consuming.

Solve the DE-model
• Exactly

• Approximately

• Numerically/computationally

• All of the above

Evaluate the solution
• Does the solution described

previously observed behavior?

• Should the model be modified?

• Is the model good in some
restricted set of cases?

• Can the model predict behavior
not yet observed?

Are there other ways to model the
problem? DEs are just one tool of
many.

Philosophy on the application of math-
ematics:

• It is not “exact.”

• Requires judgment and
imagination.

• Requires knowledge of both the
application and mathematics.

• Requires collaboration and
communication across
disciplines.



Math 2343: Introduction Separable ODEs Linear, non-homogeneous Graphical analysis Numerical Approximation Applications

Growth/Decay Rate

There is a branch of mathematical biology called “Population
Dynamics,” where the competition between species is studied. This is
important in environmental resource management. “Epidemiology” is
very similar in that there is a competition between those who are
susceptible, those who are infected and those who are recovered,
from a particular disease.

dP
dt

= Rate of change of the population.

dP
dt

P
=

1
P

dP
dt

=
Rate of change

population
= Growth/Decay Rate

Growth rate measures the Rate of change with respect to the
population size, i.e., the relative rate of change. The distinction is
important.
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Exponential vs. linear
Suppose dP

dt = k .
• There are always k new

individuals in a given time,
independent of P. For example,
no matter how many have been
admitted, Bush Stadium’s
turnstile gates allow only a fixed
number to enter over a given
time.

• Solve by integration.

• P(t) = kt + C, apply IC
C = P(0), so P(t) = P(0) + kt .

• Results in linear growth.

Suppose 1
P

dP
dt = k or dP

dt = kP.
• The rate of change depends on

the population size. For example,
this reflects the fact that with
more members in a population
there can be more births.

• Solve by separation.

• P(t) = Cekt , apply IC C = P(0),
so P(t) = P(0)ekt .

• Results in exponential grown

Which model is more accurate depends
on the application.
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Decay and Death

Decay is just the negative of growth.
dP
dt = −k so P(t) = P(0)− kt .
• Linear decrease.
• People leave Bush Stadium at a fixed rate.

dP
dt = −kP so P(t) = P(0)e−kt .
• Exponential decay.
• The more members of a population, the more deaths there are.



Math 2343: Introduction Separable ODEs Linear, non-homogeneous Graphical analysis Numerical Approximation Applications

Money in savings account

P = amount (principal). dP
dt = change in time.

How can the amount change?

• Interest: "Interest rate" = "Growth rate" = r1

dP
dt

= "interest rate" times P

= r1P
⇒ P(t) = P0ert

• Deposits & withdrawals: on average, r2 dollars/day.

dP
dt

= r2

⇒ P(t) = r2t + P0
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Money in savings account

Together.... Interest AND deposits+withdrawals?

• Must start with new ODE.
• DO NOT ADD THE SOLUTIONS FROM ABOVE.

New ODE with both proceses.

dP
dt

= r1P + r2, P(0) = P0 (28)

Solve and note effect of compound interest!
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A few more applications

Radioactive decay
Experimental observation: The rate of decay of a radioactive material
is proportional to the number of atoms present.

• Half-life
• Doubling time (money in the bank)

Model and solve

Single-species population
Birth, death, deposits and withdrawals.

• Equilibrium
• Fish are positive

Model and solve

Argon LASER
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And two more applications

Your money-market checking account comes with an interest rate of
2% (r = 0.02 1/day). On average you withdray $3 dollars/day. Initially,
you have $1000 in the account. When does your balance increase
tenfold?
Model and solve.

Thermal cooling: the rate of change of the surface temperature of an
object is proportional to the difference between the temperature of the
object and it’s surroundings. (Newton’s law of cooling)
Modeling and solving.
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And mixture (tank) applications
Concerned with the amount of a given substance present in a solution
as a function of time. Our goal is to formulate and solve a differential
equation for the quantity Q(t) of interest. Consider a box of sand:

dQ

dt

dQ

dt

IN

Q = amount of
       sand

= ?

IN 1

IN 2

IN 3

OUT 1

OUT 2

OUT

= INs − OUTs

LAW of MASS BALANCE
The rate of change of Q = rate of sand in - rate of sand out.

dQ
dt

=

[
dQ
dt

]
in
−
[

dQ
dt

]
out

Similar to dP
dt = (Births - Deaths) or (Deposits - Withdrawals).
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A problem with just flow

First, a simple example with just water, not a mixture.
ex. Consider a tank that can hold 1000 gal of water. Water is being
pumped into the tank at a rate of 10 gal/min. Water is pumped out of
the tank at rate of 8 gal/min. Initially, there are 200 gal in the tank.
Formulate and solve an ODE for the amount of water in the tank.
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Now with stuff in the flow

Suppose there is "stuff" mixed into the water, i.e., there is a
concentration of "stuff" in the volume of water. How do we determine
the amount quantity of "stuff" that is in the mixture?

Concentration =
Quantity
Volume

⇒ C(t) =
Q(t)
V (t)

Both the amount Q(t) and the volume V (t) may be functions of time.
Hence, the concentration C(t) also changes in time.

How do we get the rate of change of the quantity/amount of stuff?

dQ
dt

= flow rate · concentration (29)

mass
time

=
volume

time
· mass

volume
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Two mixture problems

ex. A room has a volume of 800 ft3. The air in the room contains
chlorine at an initial concentration of 0.1 g/ft3. Fresh air enters the
room at a rate of 8 ft3/min. The air in the room is well mixed and flows
out of the door at the same rate that it flows in.
Find the concentration of chlorine as a function of time.

ex. A well circulated pond contains 1 million L of water. It contains
pollutant at a concentration of 0.01 kg/L. Pure water enters from a
stream at 100 L/h. Water evaporates from the pond (leaving the
pollutant behind) at 10 L/h and water flows out a pipe at 80 L/h.
How many days will it take for the pollution concentration to drop to
0.001 kg/L?
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