Thomas W. Carr

Department of Mathematics Southern Methodist University Dallas, TX

Introduction

Inverse Laplace transform

Solving ODEs with Laplace transforms

Discontinuous forcing functions

Convolution

Dirac Delta

Introduction

Inverse Laplace transform

Solving ODEs with Laplace transforms

Discontinuous forcing functions

Convolution

Dirac Delta

Definition

Solution process:

- Idea is that using \mathcal{L} and \mathcal{L}^{-1} allows for easier solution.
- Allows us to tackle discontinuous functions.

Definition of C:

F(s) is the \mathcal{L} -Transform of f(t), t > 0:

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$$
 (1)

Write this down!

$$F(s) = \mathcal{L}[f(t)] = \int_0^\infty e^{-st} f(t) dt$$
 (2)

Write this down!

- Integration in t leaves a function of s.
- $\int_0^\infty \Rightarrow$ Improper integral. Must make sure the limit exists.

$$\int_0^\infty g(t) dt = \lim_{b \to \infty} \int_0^b g(t) dt$$

If the limit exists, *convergence*, otherwise, divergence

Laplace of eat

ex. Use the integral definition to find the Laplace transform of e^{at} .

Substitute $f(t) = e^{at}$ and integrate.

$$F(s) = \frac{1}{s - a}, \quad s > a \tag{3}$$

Given $f(t) \stackrel{\mathcal{L}}{\rightarrow} F(s)$, there is an inverse Laplace operator so that we can take F(s) back to f(t).

$$f(t) \stackrel{\mathcal{L}}{\underset{\mathcal{L}^{-1}}{\rightleftharpoons}} F(s)$$
 and $\mathcal{L}^{-1} [\mathcal{L} [f(t)]] = f(t)$ (4)

$$e^{at} \stackrel{\mathcal{L}}{\rightleftharpoons} \frac{1}{s-a} \tag{5}$$

Laplace is a linear operator

$$\mathcal{L}[c_1 f_1 + c_2 f_2] = c_1 \mathcal{L}[f_1] + c_2 \mathcal{L}[f_2]$$

$$= c_1 F_1 + c_2 F_2$$

$$\mathcal{L}^{-1}[c_1 F_1 + c_2 F_2] = c_1 \mathcal{L}^{-1}[F_1] + \mathcal{L}^{-1}[F_2]$$

$$= c_1 f_1(t) + c_2 f_2(t)$$

ex.

$$F(s) = \frac{5}{s-2} + \frac{8}{3} \frac{1}{s+3} \tag{6}$$

Find f(t).

Examples

ex.
$$f(t) = 1$$
.
Find $F(s)$.
ex. $f(t) = \cos(bt)$
Find $F(s)$.

ex. $F(s) = \frac{3+3s}{s^2+10}$

Find f(t).

ex.
$$f(t) = t^n$$
.
Find $F(s)$.
ex. $f(t) = 2t^5$

Find
$$F(s)$$
.
ex. $F(s) = \frac{6}{s^4}$

ex.
$$F(s) = \frac{1}{5}$$

Find $f(t)$.

Step function

ex.

$$f(t) = \begin{cases} 0 & 0 \le t \le t_0 \\ a & t_0 \le t \end{cases}$$

Find F(s).

ex. Heaviside- or Unit-step function

$$H(t-t_0) = \begin{cases} 0 & 0 \le t \le t_0 \\ 1 & t_0 \le t \end{cases}$$

$$H(t-t_0) \stackrel{\mathcal{L}}{\underset{C^{-1}}{\rightleftharpoons}} \frac{1}{s} e^{-st_0}$$

Some properties

Linearity: already done.

Shifting property:

$$e^{ct}f(t) \overset{\mathcal{L}}{\underset{\mathcal{L}^{-1}}{\rightleftharpoons}} F(s-c)$$

Mult by exp in $t \overset{\mathcal{L}}{\underset{\mathcal{L}^{-1}}{\rightleftarrows}}$ Shift in s.

Derive using the integral definition.

ex.

$$F(s) = \frac{2}{(s-2)^3} \tag{7}$$

Invert

Some properties (cont)

Derivative of F(s):

$$-tf(t) \stackrel{\mathcal{L}}{\underset{\mathcal{L}^{-1}}{\rightleftharpoons}} \frac{dF(s)}{ds}$$

Derive using the integral definition.

ex.

$$\mathcal{L}[t\cos(bt)] = ? \tag{8}$$

Use the derivative property.

Derivative of x(t)

We want to solve ODEs

$$ax'' + bx' + cx = f(t)$$

We will need to know the Laplace transform of x' and x''.

$$\frac{dx}{dt} \underset{\mathcal{L}^{-1}}{\overset{\mathcal{L}}{\rightleftharpoons}} s\mathcal{L}[x] - x(0) \tag{9}$$

Derive using the integral definition.

Using integration by parts twice, we can show that

$$\frac{d^2x}{dt^2} \underset{\mathcal{L}^{-1}}{\overset{\mathcal{L}}{\rightleftharpoons}} s^2 \mathcal{L}[x] - sx(0) - \frac{dx(0)}{dt}$$
 (10)

The ICs are part of the result for Laplace of derivatives.

Introduction

Table of Laplace Transform Pairs

Given on quizzes and exams

 $\begin{array}{rcl} \cos{(a\pm b)} & = & \cos{a}\cos{b} \mp \sin{a}\sin{b} \\ \sin{(a\pm b)} & = & \sin{a}\cos{b} \pm \sin{b}\cos{a} \end{array}$

Table of Laplace Transforms	
f(t)	$\mathcal{L}[f(t)] = F(s) = \int_0^\infty e^{-st} f(t) dt$
1	1 8
e^{at}	$\frac{1}{s-a}$
$\sin bt$	$\frac{b}{s^2+b^2}$
$\cos bt$	$\frac{s}{s^2+b^2}$
t^n	$\frac{n!}{s^{n+1}}$
f(t-a)u(t-a)	$e^{-as}F(s) a>0$
g(t)u(t-a)	$e^{-as}\mathcal{L}[g(t+a) a>0$
$e^{ct}f(t)$	F(s-c)
$\tfrac{df}{dt} = f'(t)$	sF(s)=f(0)
$\tfrac{d^2f}{dt^2}=f^{\prime\prime}(t)$	$s^2 F(s) - s f(0) - f'(0)$
tf(t)	-F'(s)
$\begin{split} t^n & f(t-a)u(t-a) \\ g(t)u(t-a) & \\ e^{ct}f(t) \\ & \frac{d^d}{dt} = f'(t) \\ & \frac{d^d}{dt^2} = f''(t) \\ & f_0^t f(\tau) d\tau \\ & \int_0^t f(\tau) g(t-\tau) d\tau \end{split}$	$\frac{1}{s}F(s)$
$\int_{0}^{t} f(\tau) g(t - \tau) d\tau$	F(s)G(s)

Outline

Introduction

Inverse Laplace transform

Solving ODEs with Laplace transforms

Discontinuous forcing functions

Convolution

Dirac Delta

Inverse Laplace integral operator

$$f(t) = \mathcal{L}^{-1}[F(s)] = \frac{1}{2\pi i} \int_{c} e^{st} F(s) ds$$

where *c* is a Bromwich contour in the complex *s* plane.

For any given F(s), substitute into the integral definition for the inverse Laplace and compute the line integral.

Ack! Instead, use the table of transform pairs whenever possible.

Partial fractions

Goal: break F(s) into simpler functions each invertible using the table of transform pairs.

Partial fractions: the thing that breaks F(s) into pieces if F(s) is a rational polynomial the the degree of the denomination greater than the numerator.

$$F(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_a s + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_1 s + a_0}, \quad n > m.$$

ex.

$$F(s) = \frac{2s}{s^2 - 5s + 6} \tag{11}$$

Partial fractions then use table.

- Factor the denominator (find roots).
- Expand using partial fractions.
- Multiply by the denominator.
- Equate powers of s.
- Solve for the coefficients.
- Use the table

Outline

Introduction

Inverse Laplace transform

Solving ODEs with Laplace transforms

Discontinuous forcing functions

Convolution

Dirac Delta

Consider a constant-coefficient ODE

$$ax'' + bx' + cx = f(t), \quad x(0) = x_0, \quad x'(0) = v_0$$

- Apply the Laplace operator.
- Use the ICs
- Solve for X(s).
- Invert

Challenge is typically \mathcal{L}^{-1} .

Examples

ex.

$$x'' - x' - 6x = 0$$
, $x(0) = 2$, $x'(0) = -1$ (12)

Solve using Laplace transforms.

ex.

$$x'' + 2x' + 5x = \cos t$$
, $x(0) = 0$, $x'(0) = 1$ (13)

Solve using Laplace transforms.

ex.

$$x'' + x = \cos t, \quad x(0) = 0, x'(0) = 0$$
 (14)

Solve using Laplace transforms.

Outline

Discontinuous forcing functions

Not so nice forcing

For

$$ax'' + bx' + cx = f(t)$$
,

if *f* is "nice" we can use MUC and/or perhaps Var of Par.

Suppose f(t) is not so nice, specifically, a piece-wise continuous or discontinuous function. The other methods may be possible treating each piece separately and then patching the solutions together. However, Laplace transforms can often find the answer in a straightforward way.

ex.

ex.

Representing piecewise continuous f(t)

Heaviside- or unit-step function.

$$H(t) = \begin{cases} 0 & 0 \le t < t_0 \\ 1 & t_0 \le t \end{cases}$$
$$H(t - t_0) \stackrel{\mathcal{L}}{\underset{f^{-1}}{\overset{1}{\sim}}} \frac{1}{s} e^{-st_0}$$

- H is "off" for $t < t_0$ then "on" for $t \ge t_0$.
- "Switching" time is t₀.

$$f(t) = H(t-a) - H(t-b), \quad a < b. \quad \text{Sketch it.}$$

$$f(t) = \sin(t-a)[H(t-a) - H(t-b)], \quad a < b.$$
 Sketch it. (16)

ex.
$$f(t) = sketch$$
. Construct function (17)

ex.
$$f(t) = 3H(t) + H(t-2) + 4\left(e^{-(t-4)} - 1\right)H(t-4)$$
 Sketch it. (18)

Laplace of piecewise continuous f(t)

In general, we can construct piecewise continuous f(t) by adding together the separate pieces:

$$f(t) = f_1(t-c_1)H(t-c_1) + f_2(t-c_2)H(t-c_2) + \dots$$

To find $\mathcal{L}[f(t)]$ we need to find

$$\mathcal{L}[f(t-a)H(t-a)] =$$
Use the integral definition to compute. (19)

$$f(t-a)H(t-a) \stackrel{\mathcal{L}}{\underset{\mathcal{L}^{-1}}{\rightleftharpoons}} e^{-sa}F(s)$$
 (20)

ex.

$$\mathcal{L}[e^{3t}H(t-4)] = \text{Sketch and transform.} \tag{21}$$

Derive the alternative formula

$$g(t)H(t-a) \underset{\leftarrow}{\overset{\mathcal{L}}{\underset{\leftarrow}{\longrightarrow}}} e^{-sa}\mathcal{L}[g(t+a)]$$
 (22)

Examples

ex.

$$\mathcal{L}[\sin(t)H(t-\frac{\pi}{2})] = \text{transform}$$
 (23)

ex.

$$X(s) = \frac{e^{-s}}{s^2 + 1} - \frac{e^{-2s}}{s^2 + 2}$$
 (24)

Invert

ODEs with discontinuous forcing

$$\begin{array}{cccc} \text{Differential equation} & \longrightarrow \text{Laplace transform: } \mathcal{L} \longrightarrow & \text{Algebraic equation} \\ & \downarrow \text{difficult} & \downarrow \text{solve} \\ \text{Solution to ODE } x(t) & \longleftarrow \text{Inverse laplace: } \mathcal{L}^{-1} \longleftarrow & \text{Algebraic solution } X(s) \\ \end{array}$$

Process with Laplace remains the same, just a bit more work with \mathcal{L} and \mathcal{L}^{-1} .

ex.

$$x'' - 3x' + 2x = g(t) = \begin{cases} 0 & t < 1 \\ 3 & 1 \le t < 2 \\ 0 & 2 \le t \end{cases} = 3[H(t-1) - H(t-2)]$$

$$x(0) = 0, \quad x'(0) = 0$$
(25)

Solve

ex.

Solve the LC-circuit problem with cosine forcing that turns on at t = 0 and off at $t = 3\pi/2$.

Outline

Convolution

Convolution: definition

How much do f and g have in common and when?

$$f(t)*g(t) = \int_0^t f(\tau)g(t-\tau) d\tau$$

- Multiply f(τ) . . .
- by a shifted version of $g(\tau)$. . .
- t is the amount of the shift ...
- Determine the resulting area.

$$f*g = \int_0^t f(\tau)g(t-\tau) \ d\tau = \int_0^t g(\tau)f(t-\tau) \ d\tau = g*f$$
fix f and shift $g = \int_0^t g(\tau)f(t-\tau) \ d\tau = g*f$

$$\mathcal{L}[f*g] = \mathcal{L}\left[\int_0^t f(\tau)g(t-\tau) \ d\tau\right] = F(s)G(s)$$

Examples

ex.

$$X(s) = \frac{1}{s(s^2 + 1)} \tag{26}$$

Invert

ex.

$$X(s) = \frac{1}{(s^2 + 1)^2} \tag{27}$$

Invert

ODEs and the convolution

Consider

$$ax'' + bx' + cx = f(t), \quad x(0) = x_0, \quad x'(0) = v_0$$
 (28)

Apply the Laplace transform.

For simplicity assume $x_0 = 0$ and $v_0 = 0$.

$$X(s) = F(s) \frac{1}{as^2 + bs + c} = F(s)G(s)$$
 where $G(s) = \frac{1}{as^2 + bs + c}$

G(*s*) contains info from the ODE. Called the Transfer Function.

Use convolution to invert.

$$\mathcal{L}^{-1}[F(s)] = f(t)$$
 $\mathcal{L}^{-1}[G(s)] = g(t)$

 \mathcal{L}^{-1} [Transfer function] = Impulse response

$$x(t) = \int_0^t f(\tau)g(t-\tau) d\tau$$

Solution machine

- Given the ODE: L[x(t)] = f(t)
 L[x] represents the left-hand side with all the x's.
- The ODE operator L determines G(s) and hence g(t). KNOWN!
- The right hand side is the forcing f(t). KNOWN.
- The solution for ANY forcing f can be found by using the convolution.
- Plug in a new f and integrate.
- Same idea as variation of parameters.

ex.

$$x'' - 16x = f(t), \quad x(0) = 0, \quad x'(0) = 1.$$
 (29)

Solve and express the result using a convolution integral.

ex. $f(t) = e^t$. Substitute into the integral and integrate.

ex. $f(t) = e^{t}[H(t-1) - H(t-2)]$. Substitute into the integral and integrate.

Introduction

Inverse Laplace transform

Solving ODEs with Laplace transform

Discontinuous forcing functions

Convolution

Dirac Delta

Definition (lazy) of Dirac Delta

- Recall unit step H(t)
 Jumps instantaneously from 0 to 1.
- Consider gradual change with $\hat{H}(t)$. Increases over interval $-t_0$ to t_0 .
- Consider the derivative of $\hat{H}(t)$. Slow is 0, then m, then 0.
- Take the limit as $\hat{H} \rightarrow H$. m (slope) $\rightarrow \infty$. $2t_0$ (width) \rightarrow 0.
- Then $rac{d\hat{H}(t)}{dt}
 ightarrow rac{dH}{dt} = \delta(t)$

 $\delta(t)$:a function with 0 width, infinite height, located at t=0.

Properties

Dirac delta located at t = a (instead of 0).

$$\delta(t-a) = 0$$
, for $t \neq a$
 $\delta(0) =$ undefined (infinite) for $t = a$.

$$\int_{-\infty}^{t} \delta(\tau) d\tau = \int_{-\infty}^{t} \frac{dH(\tau)}{d\tau} d\tau$$

$$= H(t) - H(-\infty)$$

$$= H(t) - 0$$

$$= 1 \text{ if } t > 0$$

 $\delta(t-a)$: located at t=a, has 0 width, infinite height, and area of 1.

Sifting property and Laplace

Sifting property:

$$\int_{-\infty}^{\infty} g(t)\delta(t-a) dt = g(a)$$
 (30)

Integral of g with $\delta(t-a)$ gives the value of g at t=a. Derive

Laplace:

$$\delta(t-a) \underset{\mathcal{L}^{-1}}{\overset{\mathcal{L}}{\rightleftharpoons}} e^{-sa} \tag{31}$$

Derive

(Borrowing from the slide on Convolution)

Consider

$$ax'' + bx' + cx = f(t), \quad x(0) = 0, \quad x'(0) = 0.$$
 (32)

Apply the Laplace transform.

$$X(s) = F(s) \frac{1}{as^2 + bs + c} = F(s)G(s)$$
 where $G(s) = \frac{1}{as^2 + bs + c}$

G(s) contains info from the ODE. Called the Transfer Function.

Consider

$$ax'' + bx' + cx = \delta(t), \quad x(0) = 0, \quad x'(0) = 0.$$
 (33)

Apply the Laplace transform.

$$X(s) = \frac{1}{as^2 + bs + c} = G(s)$$

G(s) is the Laplace transform of the Impulse response g(t).

Some examples

ex. Consider a mass-spring system with mass of 1 kg, damping coefficient of 2 kg/s and spring constant of 2 kg/s². The mass is initially at rest. At t=3 it is given a sharp impulse with a hammer. What is the resulting motion? Model and solve.

ex. Marching soldiers have sometimes been told to break stride and march out of step when crossing a bridge. Why? Suppose the bridge can be modeled as a mass-spring system with m=1 and k=1 and the soldiers footsteps a sequence of delta-dirac functions. Thus,

$$x'' + x = \sum_{k=1}^{\infty} \delta(t - 2k\pi), \quad x(0) = x'(0) = 0.$$
 (34)

Solve.