Math 3313: Differential Equations Second-order ordinary differential equations

Thomas W. Carr

Department of Mathematics Southern Methodist University Dallas, TX

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coefficits

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coeffients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

2nd order ODE

We've considered 1st order

$$\frac{dx}{dt} = f(x, t)$$

2nd order

$$\frac{d^2x}{dt^2}=f(x,\frac{dx}{dt},t)$$

Linear, 2nd order, non-homogeneous

$$a_2(t)\frac{d^2x}{dt^2} + a_1(t)\frac{dx}{dt} + a_0(t)x = f(t)$$

Linear, 2nd order, constant-coefficient, non-homogeneous

$$a\frac{d^2x}{dt^2}+b\frac{dx}{dt}+cx=f(t)$$

If f(t) = 0, ODE is homogeous.

Newton's 2nd law

$$\frac{d}{dt} \text{Momentum} = \sum \text{forces}$$

$$\frac{d}{dt} (\text{mass times velocity}) = \sum \text{forces}$$

$$\frac{d}{dt} \left(m(t) \frac{dx}{dt} \right) = \sum \text{forces}$$

$$\frac{dm}{dt} \frac{dx}{dt} + m(t) \frac{d^2x}{dt^2} = \sum \text{forces}$$

If m(t) = constant, then $\frac{dm}{dt} = 0$.

$$m \frac{d^2 x}{dt^2} = \sum$$
 forces mass times acceleration $= \sum$ forces

If forces depend only on time, we can simply integrate twice

$$m\frac{d^2x}{dt^2} = f(t)$$
 ("phys 101")

In general, forces depend on position x and speed $\frac{dx}{dt}$.

Modeling the mass-spring

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coeffients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

2 initial conditions

2nd order linear ODE (' = prime means derivative)

$$x'' + p(t)x' + q(t)x = f(t)$$

If constant-coeficient

$$ax'' + bx' + cx = f(t)$$

To find x(t) we have to "integrate" twice.

- Expect 2 unknown constants.
- Need 2 ICs

$$x(t_0) = x_0, \quad x'(t_0) = v_0$$

Form of the solution

Homogeneous: f(t) = 0

$$x_h'' + p(t)x_h' + q(t)x_h = 0$$
, where $x_h(t) = c_1x_1(t) + c_2x_2(t)$

 x_h is the sum of two *linearly independent solutions*, x_1 and x_2 .

Fundamental set =
$$\{x_1, x_2\}, x_2 \neq cx_1$$

Nonhomogeneous with particular solution $x_p(t)$ due to forcing f(t).

$$x_p'' + p(t)x_p' + q(t)x_p = f(t)$$

The complete solution is the sum of homogeneous and particular

$$x(t) = x_h(t) + x_p(t) = c_1 x_1(t) + c_2 x_2(t) + x_p(t)$$

Linear Independence

A set of functions $\{x_1(t), x_2(t), \dots, x_n(t)\}$ are linearly **dependent** if $k_1x_1 + k_2x_2 + \dots + k_nx_n = 0$ for some set of constants $k_n \neq 0$, for all n. Otherwise, **independent**.

Wronskian:

$$W(t_0) = x_1(t_0)x_2'(t_0) - x_1'(t_0)x_2(t_0)$$
 (1)

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coefficients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

2nd order ODEs as a system

We've considered

$$\frac{d^2x}{dt^2}=f\left(t,x,\frac{dx}{dt}\right),\quad x(0)=x_0,\ x'(0)=v_0.$$

Let the first derivative be a new variable:

Let
$$\frac{dx}{dt} = y$$

Then $\frac{d^2x}{dt^2} = \frac{dy}{dt} = f(t, x, y)$

So instead of a single 2nd order ODE, we have two first order ODEs.

$$\frac{dx}{dt} = y, \quad x(0) = x_0$$

$$\frac{dy}{dt} = f(t, x, y), \quad y(0) = x'(0) = v_0$$

Examples

ex.

$$x'' + p(t)x' + q(t)x = f(t)$$
 (2)

Write as a system.

ex.

$$x'' + xx' + x^2 = 0 (3)$$

Write as a system.

ex.

$$x''' + (1 - x^2)x' + x = 0 (4)$$

Write as a system of 3 first order ODEs

Numerical solvers need ODEs as systems. -> matlab demo

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coeffients

Higher order, linear, constant coefficients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

Exponential solutions

Linear, constant coefficient differential equations have exponential solutions.

$$ax'' + bx' + cx = 0$$

Recall 1st order, linear, constant-coefficient

$$x' = kx \Rightarrow x \sim e^{kt}$$

Apply to higher-order: let $x = e^{rt}$. Substitute and solve for r.

Note:

$$\frac{d^n}{dt^n}e^{rt}=r^ne^{rt}$$

Apply to 2nd order L-CC

$$a(r^2e^{rt}) + b(re^{rt}) + c(e^{rt}) = 0$$

 $(ar^2 + br + c)e^{rt} = 0$

The characteristic equation determines the values of r

$$ar^2 + br + c = 0 ag{5}$$

- · Turned ODE into algebra.
- Quadratic for $r \Rightarrow$ two values for r: r_1 and r_2 .

$$x(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$
 sort of... depends...

Details and three different cases.

Summary

Given

$$ax'' + bx' + cx = 0$$

Let $x = e^{rt}$.

• $r = r_1, r_2$: real & distinct

$$x = c_1 e^{r_1 t} + c_2 e^{r_2 t}$$
 exponential decay and/or growth

• $r = r_0, r_0$: real repeated.

$$x = c_1 e^{r_0 t} + c_2 t e^{r_0 t}$$
 $t \exp r_0 t$ is second solution

• $r = \alpha \pm i\beta$: complex conjugate

$$x = c_1 e^{\alpha t} \cos(\beta t) + c_2 t e^{\alpha t} \sin(\beta t)$$
 exponentials with oscillations

• Important!! $e^{i\beta t} \Leftrightarrow \cos(\beta t)$ and $\sin(\beta t)$.

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coefficits

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

Char. equation with n roots

nth order, linear, constant coefficient

$$a_n \frac{d^n x}{dt^n} + a_{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \ldots + a_1 \frac{dx}{dt} + a_0 x = 0$$

Let $x = e^{rt}$.

$$a_n r^n + a_{n-1} r^{n-1} + \ldots + a_1 r + a_0 = 0$$
 (6)

Characteristic equation for r = nth degree polynomial. Can we finds it's n roots?

(i) Some are real and distinct:

$$(r-r_1)(r-r_2)\dots(r-r_j)$$
 (rest of poly) = 0
$$r=r_1,\ r_2,\dots,r_j,\ \text{the rest}$$
 $x=c_1e^{r_1t}+c_2e^{r_2t}+\dots+c_je^{r_jt}+\ \text{the rest}$

n roots (continued)

ii) Some have multiplicity m. Suppose r_0 is a root m times.

$$(r-r_0)^m$$
 (rest of poly) = 0

Via Reduction or Order m times:

$$x = c_1 e^{r_0 t} + c_2 t e^{r_0 t} + \ldots + c_{m-1} t^{m-1} e^{r_0 t} + \text{ the rest}$$

ii) Some are complex-conjugate . . . with multiplicity $\textit{m. r} = \alpha \pm i\beta$ are each a root m-times.

$$(r - (\alpha + i\beta))^m (r - (\alpha - i\beta))^m$$
 (rest of poly) = 0
 $(r^2 - 2\alpha r + (\alpha^2 + \beta^2))^m$ (rest of poly) = 0

Number of roots is 2m.

$$x = e^{\alpha t} (c_1 \cos \beta t + c_2 \sin \beta t) +$$

$$e^{\alpha t} t(c_3 \cos \beta t + c_4 \sin \beta t) + \dots +$$

$$e^{\alpha t} t^{m-1} (c_* \cos \beta t + c_* \sin \beta t) + \text{the rest}$$

How do we factor the polynomial?

- "Obvious"
- Recognize standard form (Pascal's triangle).
- Find one root and the factor with synthetic division.
 (Optional and esoteric case.)

$$ODE + a_0 x = 0$$
Let $x = e^{rt} \Rightarrow Poly(r) + a_0 = 0$.
Factor: $(r - r_1)(r - r_2) \dots (r - r_n) = 0$
 $a_0 = r_1 r_2 \dots r_n \Rightarrow \text{ Try integer roots of } a_0$.

Numerical (Newton's method)

Examples

Solve the following:

ex.

$$x''' - x'' - 6x' = 0 (7)$$

ex.

$$x'''' + 3x''' + 3x'' + x' = 0 (8)$$

ex.

$$x'''' + 8x'' + 16x = 0 (9)$$

ex.

$$x''' + x'' - 6x' + 4x = 0 ag{10}$$

 $r_1 = 1$. Factor... continue.

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coeffients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

Terms to know

Simple harmonic motion
Polor coordinates
Amplitude & phase
Free response ⇒ no friction/resistance/damping
Underdamped vs. critically damped vs. overdamped.

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coeffients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

Quick review

2nd order, linear, variable coefficient, non-homogeneous

$$x'' + p(t)x' + q(t)x = f(t)$$

Constant coefficient

$$ax'' + bx' + cx = f(t)$$

Homogeneous problem:

$$ax_h'' + bx_h' + cx = 0$$
, let $x = e^{rt}$ $\Rightarrow x_h = c_1x_1 + c_2x_2$

Non-homogeneous problem:

$$ax_p'' + bx_p' + cx_p = f(t)$$
 \Rightarrow Find x_p somehow.

Complete solution

$$X = X_h + X_D = C_1 X_1 + C_2 X_2 + X_D$$

Apply ICs LAST to x. Do not apply ICs to x_h .

When to use MUC

IF the ODE is **constant coefficient**...

AND if $f(t) = \dots$

- polynomial
- exponential
- sin or cos
- combinations of the above

Then find x_p with MUC.

Theory and examples.

Summary MUC

Given a linear ODE

$$L(x) = F_{1m}(t)e^{a_1t} + F_{2n}(t)e^{a_2t} + \dots$$

Solve for x_h.

$$L(x_h) = 0$$
 (note the roots r and their multiplicities.)

- Solve for x_p.
 - Superposition: consider each part of f separately.
 Find solutions and add.
 - $f_{im} = F_{im}(t)e^{a_jt}$
 - Guess $x_{ni} \sim P_{im}(t)e^{a_jt}t^k$
 - k = number of times r is a root if a = r.
 - If $f_i \sim \sin \beta t$ or $\cos \beta t$ always guess both.
- $x_p = x_{p1} + x_{p2} + \dots$ Substitute into ODE and find the coefficients.
- $x = x_h + x_p$ Apply ICs last.

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coeffients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

No damping & harmonic forcing

How does the mass-spring respond to a force f(t)?

$$mx'' + bx' + kx = f(t)$$

- No damping (no resistance, no dissipation): b = 0.
- Harmonic forcing: $f(t) \sim \sin \omega_f t$ or $\cos \omega_f t$.

$$mx'' + kx = F_0 \cos \omega_f t$$

• F_0 is the forcing amplitude and ω_f is the forcing frequency.

Solve using MUC.

Resonance: if b = 0, then when $\sqrt{k/m} = \omega_f$.

WITH damping & harmonic forcing

$$mx'' + bx' + kx = F_0 \cos \omega_f t$$

Solve using MUC.

- How does damping change the solution?
- How does damping change resonance?

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coefficients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

Introduction

General, 2nd order, linear, homogeneous, ODE

$$a_2(t)x'' + a_1(t)x' + a_0(t)x = 0$$

- Coefficients depend on t
- Problem if $a_2(t = t_s) = 0$. ODE: 2nd order "becomes" 1st order near $t = t_s$.
- If a₂(t_s) = 0 or if either a₁(t_s) or a₀(t_s) is undefined, then t = t_s is a singular point.

There is no general method to solve ODEs with variable coefficients.

- Exact solutions: only for specific cases (e.q. Euler).
- Approximate solutions: require series.

Euler Equation (2nd order)

$$at^2x'' + btx' + cx = 0 ag{11}$$

The power of *t* matches the number of derivatives.

Solution: let $x = t^r$

Substitute and find equation for r.

Derive the Indicial equation for *r*;

$$ar^2 + (b-a)r + c = 0$$
 (12)

Are the values of r ...

- Real and distinct.
- Real and repeated.
- Complex conjusgate.

What do the solutions look like in each case?

Euler examples

ex.

$$2t^2x'' + tx' - 15x = 0. (13)$$

Solve.

ex.

$$t^2x'' + 7tx' + 13x = 0 (14)$$

Solve.

Higher order Euler

$$a_n t^n \frac{d^n x}{dt^n} + a_{n-1} t^{n-1} \frac{d^{n-1} x}{dt^{n-1}} + \ldots + a_1 t \frac{dx}{dt} + a_0 x = 0$$
 (15)

let $x = t^r$.

Higher order polynomial for r.

Compare sin(x) to sin(ln(x))

Mass-spring & Newton's 2nd law

Properties and definitions

Systems of ODEs

2nd order, linear, constant coefficients

Higher order, linear, constant coeffients

Free mechanical vibrations

Method of Undetermined Coefficients

Forced mass-spring

Variable coefficient ODEs

Review of solutions

2nd-order, linear, ODE

$$x'' + p(t)x' + q(t)x = f(t)$$

We've consider:

$$ax'' + bx' + cx = f(t) \sim F_m(t)e^{at}$$
, a possibly complex $at^2x'' + btx' + cx = 0$

Now allow for arbitrary coefficients (p(t) and q(t)) and forcing (f(t)). Solution = homogeneous + particular

$$X = X_h + X_p = C_1 X_1 + C_2 X_2 + X_p$$

Var. of Par. method

IF we can find $\{x_1, x_2\}$ such that

$$X_h = C_1 X_1 + C_2 X_2$$

Then we can find x_p FOR ANY f(t) using variation of parameters.

$$x_p = v_1(t)x_1(t) + v_2(t)x_2(t)$$
 (16)

- v_1 and v_2 are the "parameters" that are now variable functions.
- v₁ and v₂ are unknown.
- x₁ and x₂ are from the homogeneous solution and known.
- Substitute proposed solution and find 2 conditions for the 2 unknowns v₁ and v₂.

Var. of Par. example

ex.

$$x'' + x = \tan t \tag{17}$$

Find x_h and then x_p .

See next slide for discussion of alternative var par formula.

ex.

$$x'' - x = t^{-2}e^t (18)$$

Solve.

ex.

$$t^2 x'' + t x' - x = t^{1/2} (19)$$

What is f(t)? Solve.

Alternative var par formula

Solve for v_1 and v_2 from the two conditions.

$$v'_1x_1 + v'_2x_2 = 0$$

 $v'_1x'_1 + v'_2x'_2 = f$.

From the first equation

$$v_1' = -v_2' \frac{x_2}{x_1}$$

Substitute into the second equation

$$-v_2 \frac{x_2}{x_1} x_1' + v_2' x_2' = f$$

$$v_2' (x_1 x_2' - x_1' x_2) = f x_1.$$

Note that the term in parenthesis is the Wronskian.

$$v_2' = \frac{fx_1}{W(x_1, x_2)} \quad \Rightarrow \quad v_2 = \int \frac{fx_1}{W(x_1, x_2)} dt$$
 (20)

$$v_1' = -\frac{fx_1}{W(x_1, x_2)} \frac{x_2}{x_1} = -\frac{fx_2}{W(x_1, x_2)} \frac{x_2}{x_1} \quad \Rightarrow \quad v_1 = -\int \frac{fx_2}{W(x_1, x_2)} dt \qquad (21)$$

Alternative var par formula

Substitute results for v_1 and v_2 into x_D .

$$x_p(t) = -\int \frac{f(s)x_2(s)}{W(s)} ds \ x_1(t) + \int \frac{f(s)x_1(s)}{W(s)} ds \ x_2(t)$$

Bring x_1 and x_2 into the integral.

$$x_{p}(t) = \int \frac{[x_{1}(s)x_{2}(t) - x_{1}(t)x_{2}(s)]}{W(s)} f(s) ds$$
 (22)

Call that big fraction G(t, s) whose parts are all known. G is a known function in terms of the homogeneous solution.

$$x_p(t) = \int G(t,s)f(s) ds$$

G is referred to as the Green's function or Influence function or Impulse response.

The integral is a *solution machine*. Given L(x) = f(t). Find G. Then for any f just plug into the integral and out pops x_p .