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Abstract

The Edmonston vaccine strain of measles virus has potent and selective activity against a wide range of tumors.

Tumor cells infected by this virus or genetically modified strains express viral proteins that allow them to fuse with

neighboring cells to form syncytia that ultimately die. Moreover, infected cells may produce new virus particles that

proceed to infect additional tumor cells. We present a model of tumor and virus interactions based on established

biology and with proper accounting of the free virus population. The range of model parameters is estimated by

fitting to available experimental data. The stability of equilibrium states corresponding to complete tumor eradication,

therapy failure and partial tumor reduction is discussed. We use numerical simulations to explore conditions for

which the model predicts successful therapy and tumor eradication. The model exhibits damped, as well as stable

oscillations in a range of parameter values. These oscillatory states are organized by a Hopf bifurcation.
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Virotherapy studies

• Adenovirus: head and neck cancer (Nemunaitis et al., 2001)

Metastatic colon cancer (Reid et al., 2001, 2002)

• Newcastles diseases: various (Pecora et al., 2002)

• Edmonston vaccine strain of measles:
+ non-Hodgkin lymphoma (Grote et al., 2001)

+ multiple myeloma (Peng et al., 2002)

+ ovarian carcinoma (Peng et al., 2002)

+ cerebral glioma (Phyong et al., 2003)

+ breast carcinoma (McDonald et al., 2006)

• Phase I and II clinical trials have investigated safety.
Suboptimal delivery and low doses limit efficacy.
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Virotherapy of measles

• Virus has (or engineered to have) selective activity against
tumor cells.

+ Most tumor cells over express receptor CD46.
+ No harmful effects on normal tissue.

• Infected tumor cells become virus factories.
+ Cell death releases virions for reinfection.
+ Replication of infected cells is small.

• Infected tumor cells fuse with “healthy" tumor cells and
eventually die.

+ Fusion ≫ lysis. (Peng et al. 2002, Anderson et al. 2004.)

+ Syncytia die in ( 2-3 days).

• In vivo monitoring via bio-markers detected in the blood or
molecular imaging via iodide isotopes preferentially
absorbed by the tumor.
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Myeloma data

• In vivo experiments by Dingli, et al., 2004.
+ Human myeloma xenografts grown in immunodeficient

mice.
+ Data obtained for the size of untreated tumors.
+ Data obtained with virus introduced on day 15.

• In vitro, all tumor cell lines are destroyed.
In vivo, results are variable.
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Mathematical modeling

• Population interactions require mathematical models.

• Each important biological process is represented by a
different term in the equations.
ASSUMPTIONS

+ Which processes are unimportant and not included?
+ Which processes are imporant?
+ How do the process work, i.e., how should they be

modeled?

• Experimental data used for parameter estimation model
validation.
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Model predictions

• Model predictions.
How well does the model (simulated or analytical results)
match the physical system?

+ Which assumptions are correct and which are wrong?
+ Did we properly model how the processes work?

• Tests our understanding of the biology.
TESTS ASSUMPTIONS

+ Fundamental biological processes.
+ Tumor-virus dynamics.
+ Therapy optimization.

• Fancy mathematical analysis often less important that
understanding and feedback that can be provided to the
scientist.
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Generalized Logistic growth of tumor
Bertalanffy-Richards

dy
dt

= ry
[

1 −
(y + x)ǫ

K ǫ

]

− κyv − ρxy

dx
dt

= κyv − δx

dv
dt

= αx − ωv − κyv

y
r Κ, ε

Net growth rate Saturation

Generalized Logistic growth of tumor
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Viral infection of tumor

dy
dt

= ry
[

1 −
(y + x)ǫ

K ǫ

]

− κyv − ρxy

dx
dt

= κyv − δx

dv
dt

= αx − ωv − κyv

Viral infection of tumor

y
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v

κ
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α
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Virus
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ω

Virus elimination

natural, virus, immune response
Cell death:
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Cell death and virus release

dy
dt

= ry
[

1 −
(y + x)ǫ

K ǫ

]

− κyv − ρxy

dx
dt
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Tumor cell fusion

Entension of models by Wodarz et al. (2001, 2003, 2005).

dy
dt

= ry
[

1 −
(y + x)ǫ

K ǫ

]

− κyv − ρxy

dx
dt

= κyv − δx

dv
dt

= αx − ωv − κyv

x

y

ρ

Synctium generation via cell fusion
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Rate equations and parameters

dy
dt

= ry
[

1 −
(y + x)ǫ

K ǫ

]

− κyv − ρxy

dx
dt

= κyv − δx

dv
dt

= αx − ωv − κyv

r effective growth rate of uninfected cells (day−1)
K carrying capacity (in 106 cells)
κ infection rate constant (per day per 106 cells or virions)
ρ rate constant of cell fusion (per day per 106 cells)
δ effective death rate constant of infected cells (day−1)
ω rate constant of virus elimination (day−1)
α virus production rate constant (virions per day per cell)
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Rate equations and block diagram

dy
dt

= ry
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1 −
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K ǫ
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Total tumor size u.

• u = x + y : total tumor size.

• u < 10−6 : Absolute tumor eradication = less than one cell.

• u = 1: Experimental limit of tumor detection ≈ 106 cells.

• t = 1000: Max. lifetime of mouse.

• u(1000) ≤ 1: “Successful" therapy.

Experimental limitations and practicalities must be
acknowledged.
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Therapy failure or success

• u = 0: Tumor eradication = success.
UNSTABLE: / / / / / /u → 0

• u = K : Saturation and therapy failure.

• u < K : Reduced tumor size: Partial success.

• Exchange of stability between success and partial
success.

δω = (α − δ)κK

An increase in the infection rate of virus production (κ), or
a decrease in the rate of virus elimination (ω), increases
the effectiveness of therapy. Failure ⇒ partial success.
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Least squares and Monte Carlo

• Data: untreated tumors and virotherapy at t = 15 days.
Tumor size units: 1 mm3 ≈ 106 cells.

• Weighted non-linear least-squares.

• Parameter error estimates:
Monte carlo simulations with parameter “noise" based on
experimental error bars.

fit κ δ α ω ρ χ2

a 0.000959 0.512 0 0 0.215 1.0155
S.D. 0.000861 0.276 0.026 0.021 0.116

b 0.000958 0.513 0.001 0.001 0.216 1.0175
c 0.000448 0.309 0.001 0.3 0.608 1.2839
d 0.000591 1.119 0.9 0.3 0.141 1.8489
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Model vs. untreated-tumor data

Data (circles) compared to:

• Gompertz

• Logistic

• Generalize-Logistic
r ≈ 0.21
K ≈ 2140
ǫ ≈ 1.65)
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Model vs. virotherapy data

Data (squares). Find: κ, ρ, δ , α , ω

• Zero free virus
production and elimination.

• Best fit: α = 0, ω = 0.
• Biologically not reasonable.
• In vivo experiments: α ≪ 1.

(Peng et al. 2002, 2006)

• 1/3 virus deactivation per day.
• Suggested by in vitro experiments

(Whistler et al., 1996)

• Consistent fit: α = 0.9, ω = 0.3.
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Virion reduction

dv
dt

∼ −κyv (1)

Important for proper fit.
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Initial tumor vs. virus

• Black: u(1000) ≥ 1
Unsuccessful

• Red: u(1000) = 1
Minimum v0 for success.

• White: u(1000) ≪ 1
Success

• Success requires large v0
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Successful therapy

• Search for “reasonable" parameter values that lead to
successful therapy.

• Genetically modify the virus to alter growth kinetics or
cytopathic effects.

set κ δ α ω ρ u(1000) te
b.1 0.0009575 0.015 0.053 0.001 0.5 0.99
b.2 0.0009575 0.015 0.25 0.001 0.5 0 952.8
d.1 0.0005911 0.021 1.3 0.3 0.1411 1.00
d.2 0.0005911 0.021 1.4 0.3 0.1411 0 758
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Dose scheduling

• Dose scheduling is not effective.

• Require total dosage to reach some minimum.
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Oscillations

• Between pulses the tumor is very small.

• May be effectively eradicated.
• May be undetectable.

• Undetectable ⇒ mistaken for success.

• May allow for success use of additional therapies.
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Neutral Stability Curves

Parameter values that support oscillations:
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Bifurcation diagrams
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Summary

• Virotherapy
• Viruses evolution rate ≫ tumor evolution.

Avoid therapy resistance.
• Highly nonlinear and sensitive to ICs.

Therapy variability in patients.

• Modeling + experimental data.

• Model captures cell-to-cell fusion (ρ).
Fusion ≫ lysis.

• Virion removal term important for good fit.
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Summary (cont.)

• Predictions
• Virus needs help.

Required initial dose is unrealistically large.
Dosing schedule not effective.

• Weak cytopathic viruses (small δ) are more effective.
• "Larger" alpha induces oscillations.

May cause diagnostic errors.
May allow for success via additional therapies.

• Virotherapy + slow down of tumor growth (+oscillations)
most promising.
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Summary (cont.)

• New data → model improvements.
• Gompertz logarithmic saturation: y ′ = r ln(K/u).
• Better accounting of syncytia formation s.

Contact between y and x leads to
.... new x with probability λ
... new s synctia with probability 1 − λ.
Total volume of tumor is y + x + x .

dy
dt

= r ln
[

K
y + x + s

]

− κyv − ρxy

dx
dt

= κyv − δx + λρxy

dv
dt

= α(x + s) − ωv − κyv

ds
dt

= (1 − λ)ρxy − δs
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Details...

• Z. Bajzer, T.W. Carr, D. Dingli and K. Josic, ”Optimization of
tumor virotherapy with recombinant measles viruses,” in
Optimization in Medicine and Biology, editors: Gino J. Lim
and Eva K Lee, (Taylor and Francis, 2007).

• Z. Bajzer, T.W. Carr, K. Josic, S.J. Russel and D. Dingli,
“Modeling of cancer virotherapy with recombinant measles
viruses,” J. Theoretical Biology 252:109-122, 2008.

• David Dingli, Chetan Offord, Rae Myers, Kah-Whye Peng,
Thomas W. Carr, Kresimir Josic, Stephen J. Russell, and
Zeljko Bajzer, “Dynamics of multiple myeloma tumor
therapy with a recombinant measles virus,” Cancer Gene
Therapy, accepted, 2009.
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