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Abstract

Extinction processes are stochastic events that occur in many
applications of finite populations such as reaction kinetics, population
dynamics, and bio-chemical reactions. We consider the problem of
stochastic extinction as a rare event occurring in systems with
delayed feedback. We derive a general formulation of the probability
of extinction, and show analytically and numerically, how delay
modulates the exponent of the mean time to extinction in systems
with both Gaussian and non-Gaussian noise.



Stochastic Delay Differential Equations
• SDDE:

ẋ(t) = F (x(t), x(t − τ)) + g(x(t))ξ(t)

• Deterministic part with delay:

F (x(t), x(t − τ)) = x(1 − x) − γxτ , xτ = x(t − τ)

• Noise intensity D:

ξ(t) =
√

2D[δ correlated Gaussian]
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Stochastic systems with delay

• Networks with finite signal transit times.

• Lasers with external reflections.

• Machine tool cutting.

• Epidemiology (e.g. temportary immunity)

• ...
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Variational formulation

• Probability of a large (rare) fluctuation:

Px [x ] = exp(−R/D), R = minR[x , ξ, λ]

where

R[x , ξ, λ] =
1
2

∫
ξ2(t)dt +

∫
λ(t)[ẋ(t) − F (x , xτ ) − g(x(t))ξ(t)]dt

• λ: Lagrange multiplier.

• Minimize the exponent such that ∇R = 0.

Find the noise force ξ that maximizes the probability of escape P,
under the constraint ẋ = F + gξ.



Main results

• General theory for both Guassian and non-Guassian noise that
can handle delay.

• Accurate predictions for how delay τ , delay amplitude γ and
noise intensity D, affect the switching/escape time out of the
basin of attraction of the stable steady state.



Maximize the probablity of basin escape

• Minimize the exponent such that ∇R = 0.

ẋ = λg2(x) + F (x , xτ )

λ̇ = −λ2g(x)
∂g
∂x

(x) − λ
∂F
∂x

(x , xτ ) − λ
−τ

∂F
∂xτ

(x
−τ , x)

Advanced term: x
−τ = x(t + τ)

• Hamiltonian form:

ẋ =
∂H
∂λ

(x , λ, xτ )

λ̇ = −∂H
∂x

(x , λ, xτ ) − ∂H
∂xτ

(x(t + τ), λ(t + τ), x(t))

H(x , xτ , λ) =
λ2g2(x)

2
+ λF (x , xτ ).



Optimal noise path
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Melnikov approach to computing the action R

• Solution exists for the problem when τ = 0.

• Solutions for τ 6= 0 (not small) remain close.

δτ x(t) ≡ x(t) − x(t − τ) ≪ 1

• The action be expressed as a perturbation problem:

R[x , ξ, λ] = R0[x , ξ, λ] + R1[x , ξ, λ],

R0[x , ξ, λ] =
1
2

∫
ξ2(t)dt +

∫
λ(t)[ẋ(t) − F (x , x) − g(x(t))ξ(t)]dt

R1[x , ξ, λ] =

∫
λ(t)[F (x , x) − F (x , xτ )]dt .



Minimization of R0

• Optimal path equations:

ẋo = λog2(xo) + F (xo, xo)

λ̇o = −λ2
og(xo)

∂g
∂x

(xo) − λo
∂F
∂x

(xo, xo) − λo
∂F
∂xτ

(xo, xo).

• Solutions:

λo(t) = −2
F (xo(t), xo(t))

g2(xo(t))
, and ẋo(t) = −F (xo(t), xo(t)).



Additive noise: g(x) = 1

• For the delayed logistic equation

ẋ(t) = x(1 − x) − γx(t − τ) + ξ(t) (1)

• After computing the correction R1, the action is:

R(τ) ≈ (1 − γ)3

3
(1 − γ τ) + O(τ2).

• Switching rate and switching time:

WS = c exp(−R/D) TS =
1

WS



Escape time vs. inverse noise intensity (γ = 0.1)

• Noise intensity ↓, escape time ↑
• Delay ↑, escape time ↓
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Escape time vs. delay (γ = 0.1)

• Delay ↑, escape time ↓
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Escape time vs. dissipation (τ = 0.1)

• Delay coefficient ↑, escape time ↓
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Multiplicative noise: g(x) =
√

x

• For the delayed logistic equation

ẋ(t) = x(1 − x) − γx(t − τ) +
√

xξ(t) (2)

• After computing the correction R1, the action is:

R(τ) ≈ (1 − γ)3(1 − γ τ) + O(τ2).

• Switching rate and switching time:

WS = c exp(−R/D) TS =
1

WS



Escape time vs. inverse noise intensity (γ = 0.1)

• Noise intensity ↓, escape time ↑
• Delay ↑, escape time ↓
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Data points are the mean values taken over 2000 simulations.



Escape time vs. delay (γ = 0.1)

• Delay ↑, escape time ↓
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Escape time vs. dissipation (τ = 0.1)

• Delay coefficient ↑, escape time ↓
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SIRS Epidemic with temporary immunity

Ṡ = µ(1 − S) − βSI + rγγe−µτ I(t − τ) − ξ(t)S + ηs(t)
√

S

İ = βSI − (µ + γ)I + ηi(t)
√

I

Ṙ = γI − µR + rγγe−µτ I(t − τ) + ξ(t)S + ηr (t)
√

R
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Hopf to pulsations ⇒ early extinction
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Summary

• Variational approach based on optimal path that maximizes
probability of escape.

◦ Can consider both additive and multiplicative noise sources.
◦ Generalizes to non-Guasssian noise sources.
◦ Generalizes to consider the effect of delay.

• Melnikov approach based on small path deviations used to
compute action.

◦ Not necessarily small delay.

• Switching time: excellent fit between theory and simulations.
◦ Larger noise intensity ⇒ easier escape.
◦ Larger delay coefficient ⇒ saddles are closer ⇒ easier escape.
◦ Larger delay time

⇒ farther back in history of state x(t)
⇒ weaker repulsive force of x = 0 saddle

ẋ ∼ x − γx(t − τ)

⇒ easier escape.


