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Abstract

We consider an SIRS model for disease dynamics that accounts for
temporary immunity whereby recovered individuals return to the susceptible
class. In particular, we allow for a general probability function of remaining
immune for a given time after recovery such that the model is a system of
integro-differential equations. We first show that by considering a rapidly
decreasing probility function that the original model can be approximated by a
system of delay-differential equations. Perturbation methods are then applied
to the delay equations to determine how the amplititude of oscillations, which
correspond to repeated epidemics, depends on the system parameters and,
in particular, the zeroth, first, and second moments of the probability
distribution.



SIRS Disease Dynamics
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Temporary immunity: influenza, cholera, pertussis, malaria,....



Diseases processes

e Probability for transmission, latency, recovery, maintaining immunity....

e Brauer, Castillo-Chavez, Cooke, Yorke, Hethcote, Tudor, Busenbert,
Diekman, van den Driessche, Keeling, Grenfell, Feng, Lloyd, Camitz,
Svensson, Arino, Blyss, Kyrychko, ....

e Some examples:

o0 Keeling et al: measles data consistent with a distribution with small
variation.

0 Hethcote et al./ Feng et al. /Arino et al./Blyss et al:
Ro depends on the mean of the infectious probability.
Probability functions affect local and global stability properties.
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e Exponential: ODEs
e Step (delta distribution): DDEs
e Gamma distribution: Multistage classes of ODEs



Temporary Immunity in the (R)ecovered class

Recover from infection att = 0.

P(t): Probability for remaining immune a time t.
P
dP

< O, t|Im = Ps.
— o0

R(t): Fraction of population who are recovered/immune at time t.

R(t) = [ AI(r)e IR (t —r)dr.

e The sum over all previously (I)nfectious individuals.
e Decremented by the probability of dying a natural death.
e Decremented by the probability an individual is still immune.



SIRS Epldemlc Model
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e 1: Equal birth and death rates = conserved population.
R=1-(S+]1).

e [3: Mass-action contact process for disease transmission.

e ~: Exponential probability for recovery.



Immunity Integral

I(t) =

Exponential probability

P(t)=e~

7=-1
T

I(t)
o |IDEs = ODEs

o Disease-free steady state
e Endemic steady state

/oooyl(t—r)e

_ur dP(r)
dr
Step probability

1 t<7
P(t)_{Pf Tgt

dr

I=—(1-Ppe "It -

IDEs = DDEs
Disease-free steady state
Endemic steady state
Epidemics < oscillations



Slow - medium - rapid decreasing P(t)
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Questions

SIRS - IDE: Can they be analyzed?
e For “rapidly” decreasing distributions — method of multipl e scales.

How dependent are observables on distribution differences?

e Test different distributions with matched and mismatched moments.



Asymptotic analysis of IDEs

Analysis of IDEs are most often:

e Special cases like exponential, step or gamma distributions.
IDEs = ODEs and DDEs.

e Existence, linear stabilty and global stability.
Our results:

e Constructive describing specific solution properties in terms of
parameters.

e Can handle general probability functions.
Aysmptotic analysis of IDEs

e Assume a rapidly decreasing probability function.

Approximate immunity integral by a series of delays.
IDE = DDE.

e Use linear stability, averaging and multiple scales.

e Describe amplitude of oscillations (recurrent epidemics) in terms of
disease parameters and the properties of the probability function for
temporary immunity.



Rapidly decreasing probability

Localized distribution at  time in past

Immunity integral
I(t) = / f(t,r)%dr, where f(t,r) = yI(t —r)e™"".
0
Expand f(t,r) nearr = 7, 7 to be determine.

f(t,r) = f(t,7) + fe(t, 7)[r — 7] + %f”(tﬁ)[r T

Immunity integral

/ R0 dr+fr(tr/ -0
+3 frr(tr/ -0



Rapidly decreasing probability

Localized distribution
0™ moment: Ps is the probability of becoming resusceptible.

/Oo dz(r)dr — P(o0) — P(0) = —

1% moment: 7 is chosen as the mean, which eliminates the integral.

/Oo[r -~ E 04 o

2" moment: Rapidly decreasing implies small variance.

/[t zdp POy <1

ds o o? d? _
T = p(l—S)—BSI+7[Pse » I(t—r)+7m(l(t—r)e Y Je=r 4. .
di

5 = OS5I ()



Non-dimensionalized equations

Ie 1 1
S=Sc(1+ /=X I =1lc(1 s=—t, k=
C( + S. )v C( +y)7 K’ B\/ﬂ’

= (0, 0): Non-zero endemic steady state.
e (x,y) # (0,0): Deviations from endemic steady state.

X = Y- ex(e)atby]
+c [y(s )+ <%02) <esj) g—; (y(s - r)e’ed') |r:Ts}
Y = @ty

7 [ le Psy s
€ 5 ea (w4 Ble) b s c M+’Ye ed = p

e ¢ < 1: Fast transmission relative to natural lifetime.
° ‘f,—f = 0: Weakly-damped conservative oscillator.
° ‘f,—f # 0: Need stimulus to excite oscillations/epidemics.



IDE = DDE

Immunity integral

T = £(t, 7)(0™ moment) + f, (t, 7)(0) + %fn (t, 7)(2™ moment) + ...
SIRS Equations

dx
s - — e[a + by]

B 1 ) e(dfj d2 —edr
ey(s — ) +c<§as> (P—> & (v e )i

Zeroth moment. First moment captured by 7. Second moment.

e Asymptotic analysis and bifurcations analyzed in Taylor & Carr (2009).
Method of multiple scales applied to DDEs.

e Densities with equivalent moments approximated by same DDEs.

e Densities with equivalent moments generate equivalent dynamics.



Linear probability
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Linear stability

2 2 AT : AA _
A —s—ea)\—s—l—cme smh(T)_O.

(1 — w®)tan(wr) + caw = 0,
2 (1 —w?)? 4 (caw)?

Ch =
" sinc?(£2) '

Black: A = 0 and A = 1 (difference imperceptible).
Blue and Red: A = 3 for IDEs and DDEs.
e Increasing ¢ ~ Ps leads to Hopf bifurcation.

e Increasing A postpones Hopf bifurcation.



Natural modes w ~ 1

Damping (¢) = Feedback (c) = 0. Conserved energy

= _y 1 2
. E=>x"+y—-In(1+y).
y = (1+y)x 2 y (1+y)

Slow evolution of energy with € # 0, ¢ # 0.

dE(t) A?
g = ~ O a+by(O)] + oxly(t = 7) + Sz va(t = 7))

Averaging for periodic solutions.

—ea/:x(t)zdt +c/o®x(t) {y(t -7+ ?—:yn(t — T)] dt =0,

4
Xr%ax ~ yr121ax ~ Ch (C - Chn)

1 4 1- 44
Chn:—L and nn:—Tcotr+£—§c057<l 2.

. 2 2
sinT(1—%5) 6 18 a




Amplitude of periodic solutions
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A > Apn: Slow decrease / large variance / no oscillations
A < Apn: Rapid decrease / small variance / oscillations

e Amplitude A #£0vs. A =0.
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Smaller A / rapid decrease / step-like / larger amplitude




Delay modes w ~ ™F
=

Method of multiple scales:
T = et.

d_o. 0
dt =~ ot oT
X(t) = /2 (t, T) + exo(t, T) + ...

C=Cyo+e€Ci+...

Apply to DDEs:
yt—7)—=>ylt—7T —er).

y(t—1) :y(t_TvT)_ET%y(t—T,T)-F....

Delayed 2nd derivative due to IDE:

Vet = 7)=Yae(t =7, T) + €2y (t =7, T) — 7Yur (t — 7, T)] —|—O(62)



Solvabilty condition

Solution to O(e/?) problem with slowly evolving amplitude:

X1 ~y1 ~ A(T)exp(iwt) + c.c.

A(T) determined by solvability condition at O (¢%/?).

[i2w(1 — veoo?) + VCm’D(uJ)]S—? = (—iwa + vciD(w))A — w’ngAJAJ%,

Steady-state solutions correspond to the amplitude of oscillations.

4D(w
yrg‘lax =v 2( )(C - Chd), Xmax = WYmax,
wWNd

(1-w?) te 2w?a(l — o?)
D(w) 7(1—w?)D(w) |

Chd =V



Amplitude of periodic solutions
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o Excellent fit for A = 1, less so for A = 3.

e Critical value for A.

1
2300 =

el (1——(1 w)),

e Amplitude dependence on A
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Questions

SIRS — IDE: Can they be analyzed?
e For “rapidly” decreasing distributions — method of multiple scales.

How dependent are observables on distribution differences ?

e Test different distributions with matched and mismatched
moments.



Numerical exploration of the effect of different
densities

Nondimensionalize SIR equations... do not expand immunity integral.

KO y(1) - ex()la+ by()] - (ﬁ) | ve-ner Elar
S (00)

e Considering different density functions P(t).
e Observe the effect of matched or mismatched moments.

e Hoppensteadt et. al (2007): variable step-size Pouzet-Dormand-Prince
RK pair of order 5 and 4.

o |ndividual simulations at each data point until convergence to limit cycle.

e 1, = 0.01: Average lifetime of 100 years. v = 100: Recovery time of
approximately 1 week. 5 = 200. Rg ~ % ~ 2 7 = 37 /2: Immune time
approximately 5 to 10 years.



Symmetric densities (dP /dt)

Linear

1, 0<t<T
_ 1 t—
P(t) = 1—7(1—Pf)[1+2(T2_’{1)}, T <t<T,

P, T, <t

Arctangent (a, ~ 0.0131)

1 2 t—r
P(t):l——(1—Pf)[1+—arctan( )]
2 w Ay

Algebraic (Mg =~ 0.1494)

1 t— T
P(t):lf—(lfpf)(l+(
2 Aa

Logistic (aa ~ 0.1502)

P(t)
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i
/
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P
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N—
—dP(ty/dt

P + exp (—‘Z—T)

e (5)



Asymmetric densities (dP /dt)

Linear

1,
P(t) = { 1—3a-rp [1+2 (T‘qul ﬂ ,

P,

Exponential

1,
P = { 1- Pf)exp(—%) + Pg,

0<t<Ty
T <t<T,
T, <t

0<t<T
T <t

1
Ty =7 — fe, Ae = —— ~ 0.2887.
. 2V3

Piecewise linear

1
=T,
SURE S %“—F’m’(m——%)m'
Pm — %(Pm =P (Ttuif'rm) ’

P,

0<t<T
T <t<Tm

Tm <t <Tu
Ty <t
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(b)
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Bifurcation Diagrams

Symmetric densities
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Mis-matched moments

Probability distribution Bifurcation diagram
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Pt

—dP(t)/dt

Piecewise linear: P, depends on Pg

1, 0<t<T,

1 -7 s
1_7(1_Pm)(Tm—T| , T <t<Tm
Pm—%(Pm—Pf)({—j-F]n;), Tm <t <Ty 28
P, Ty <t
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Pm optimized for each value of Ps.
Pm = 0.9828 (Ps = 0.025).
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Summary

e We considered temporary immunity.

o Could also generalize the recovery process and transmission
process.
o Not yet tested.

e |DE approximated by a DDE.
Probability function characterized by:
Feedback strength

/OOO dF;$r)dr — P(x0) — P(0) = —Ps

/[r—]

o? = _/ It —r]zdp(r)dr <1
. dr

Delay time

dr_O

Variance



Summary

Considered a linearly decreasing probability.

O Any P(t) with same Pg, 7 and A should give equivalent results. Not yet tested.

Good to excellent fit for even A = O(1).

Crude generalization:
o A more exponential like P(t) = ODEs = steady states.
o A more step like P(t) = DDEs =- oscillations.

To decrease the severity of recurrent epidemics:

o 0™ moment: Decrease Ps the fraction that become resusceptible.
o 1% moment: Detune T from “resonance”.

o 2" moment: Increase the variance of probability for becoming resusceptible, i.e.,
increase the heterogeneity of the population.

Tuning the moments...

o Densities with equivalent first 3 moments generate equivalent epidemics.
o Small mismatches lead to small differences.

o Mismatch tolerances within experimental error?
Caveats:

0 SIRS model with all its usual assumptions.
o Examined temporary immunity.



