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Delays in disease

• Physical origins

+ Latency time between compartments.
Incubation time. Infectious time. Temporary Immunity.

+ “Transit time” of biological process.

• Modeling

+ Constant coefficient ODEs: exponential distribution.
“Easy” to analyze.

+ Integro-differential Es: arbitrary distributions.
“Hard” to analyze.

+ Delay DEs: step distributions.
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Delay induced oscillations

• ODE: x(t)′ = rx(t)
+ Let x(t) ∼ exp(λt).
+ Characteristic equation: λ = r .
+ There exists a single real value λ, implying exponential

growth or decay.

• DDE: x(t)′ = rx(t − τ)

+ Let x(t) ∼ exp(λt).
+ Characteristic equation: λ = re−λτ .
+ Let λ = σ + iω

σ = re−στcos(ωτ), ω = −re−στ sin(ωτ)

+ Transcendental equations with multiple solutions
+ Allows for oscillatory solutions to a first-order DDE.
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Malaria Map
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Malaria Life Cycle

 

 

 

 

• Inter-host vs. Intra-host

• Blood cycle

• Parasitized RBCs rupture → 10-30 new
parasites.

• Parasite generations lead to fever, etc.

• PRBCs avoid splenic removal by
cytoadhering to arterial walls.

• Must attack with immune response.
Antibodies and T-Lymphocytes
recognize antigens displayed on
PRBCs.
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Plasomodium Falciparum

• Four strains of malaria in humans.

• P. vivax is the most common.
• P. falciparum is the most dangerous.

+ Highest parasite load in host.
+ Cytoadhering leads to clogging of arteries in cerebrum.

cerebral malaria
+ Leading cause of death in humans by malaria
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Antigenic variation in Pf

• Evade the host’s IR and prolonged infection by changing
the dominate genetic variant.

+ Parasite varies the major epitope on antigen PfEMP1.
+ Epitope: binding sites for immune response effectors.

• In the population there are ∼ 60 variants defined by unique
major epitopes

+ An individual will have < 60 (10-20) variants.
+ Variants will share minor epitopes.

• Individuals exhibit switching (oscillations) of the dominant
variant.

+ Sequential dominance.
+ Prevents IR from maintaining a prolong attack against a

single variant.
+ Evolutionary survival strategy.
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Antigenic variation in Plasomodium Falciparum

• Molecular switching mechanisms in a single cell are
known.

• Coordination of the parasite population is not well
understood.

• Recker et al. proposed an interaction between the variants
via the minor epitopes.

+ Switching occurs as a natural dynamic of the hosts IR.
+ No external switching mechanism or rule is needed.

Recker et al.,

Nature (2004) 429:555-558
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Model of Recker and Gupta
Bull. Math. Bio (2006) 68: 821-835

 

 

     

 
  

 
 

 

 

 

 

 
 

 
 

• Yj : variant j parasitized
red-blood cells.

• Zj : variant j specific
immune response.

• Wj : cross-reactive
immune response
affecting variant j .
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Model of Recker and Gupta
Parasitized RBCs: proliferation - removal due to IR.

dYj

dT
= φYj − αYjZj − α′YjWj

Variant specific IR: stimulation - natural degradation.

dZj

dT
= βYj |T − µZj

Cross-reactive IR: multi-variant stimulation - natural degradation.

dWj

dT
= β′

∑

k

ξjkYk |T − µ′Wj

Delayed activation of IR (Mitchell & Carr)

Yk |T = Yk (t − T )
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Some assumptions

• Specific IR (z) is long lived relative to the cross-reactive IR
(w ).

0 < µ ≪ µ′ ≪ 1

• Complete sharing of minor epitopes ⇒ global coupling.
∑

k

ξjkYk |T with ξjk = 1

⇒

n
∑

k=1

Yk |T
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Steady states

• Disease free: (Yj ,Zj ,Wj) = (0,0,0). Unstable.

• Nonuniform: (Yj ,Zj ,Wj) 6= 0. Unstable.

• Uniform: (Yj ,Zj ,Wj) = (Y0,Z0,W0). Stable.
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Rescale and nondimensionalize

New variables are deviations from the
uniform steady-state (yj , zj ,wj) = (0,0,0)

dyj

dt
= −(zj + wj)(1 + yj)

dzj

dt
=

c
n

yj |τ − azj

dwj

dt
=

1
n

n
∑

k=1

yk |τ − abwj ,

a =

√

dµ
φ

, b =
µ′

µ
, c =

αβ

α′β′
and τ =

√

µφ

d
T .

0 < µ ≪ µ′ ≪ 1
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Synchronous vs. Asynchronous

• Synchronous: yj(t) = y(t), etc.

1
n

n
∑

k=1

yk |τ = y(t)

• Asynchronous: yj(t) 6= yk (t), etc
• The plan...

+ Synchronous linear stability
+ Asynchronous linear stability
+ Asynchronous nonlinear dynamics
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Synchronous linear stability
Decay: oscillatory or monotonic?
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Decay: oscillatory or monotonic?

γ ≡
α′

α
=

removal rate due to cross-reactive IR
removal rate due to specific IR

• If γ is sufficiently large or small then there are oscillations.

• Decreasing (increasing) the number of shared of minor
epitopes n, shifts both critical values up (down).

• µ can be set such that there are always decaying
oscillations.

• The variant-specific IR can be quite slow, while still being
large enough to guarantee oscillations.
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Decay: rates

Decay rate ∼ ab =

[(

EZ + EW

EW

)(

µ′

φ

)]1/2

,

EZ ≡
αβ

µ
and EW ≡

α′(nβ′)

µ′
.

• EZ ,W = efficacy of the specific and cross-reactive IR.

• The farther away one moves from the triangular region the
variants oscillate with faster decay.

• Increasing the specific efficacy relative to the
cross-reactive efficacy leads to faster decay.
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Delayed IR

λ3 + a(1 + b)λ2 + a2bλ+ e−λτ [(1 + q)λ+ a(1 + qb)] = 0.

Th =
1
φ

(

Ez + Ew

Ew

)

.

• Parasite generation rate φ ↑ ⇒ Th ↓.
System is more susceptible to delay induced oscillations.

• Ez ≫ EW ⇒ Th ↑.
Decreases the sensitivity of the system.

• Ez ≪ EW ⇒ Th ∼ 1/φ.

• Thus, just as a strong parasite generation rate and a
strong cross-reactive IR lead to decaying oscillations in the
case of instantaneous IR, they also decrease the minimum
value of delay necessary to excite persistent oscillations.
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Asynchronous linear stability
• 3 × n system of equations.

dyj

dt
= −(zj + wj)(1 + yj)

dzj

dt
=

c
n

yj |τ − azj

dwj

dt
=

1
n

n
∑

k=1

yk |τ − abwj ,

• Characteristic equation with 3 × n roots.

[F1(λ)Fap(λ, τ)]
n−1 Fs(λ, τ) = 0

F1(λ) = λ + ab

Fap(λ, τ) = λ
2
+ aλ +

c

n
e−λτ

Fs (λ, τ) = λ
3
+ a(1 + b)λ2

+ a2bλ + e−λτ

[

λ

(

1 +
c

n

)

+ a
(

1 +
bc

n

)]

.
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Sync vs. Antiphase eigenvectors

[F1(λ)Fap(λ, τ)]
n−1 Fs(λ, τ) = 0

• n − 1 roots from F1. Always stable.
• 3 roots from Fs.

+ Same as synchronous case with “synchronized”
eigenvector vj = v .

• 2(n − 1) roots from Fap.
+ “ap” = antiphased eigenvectors

n
∑

j=1

v (y)
j = 0 ⇒ v (y)

jm = ei2πjm/n,
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Decay rates, NO DELAY
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• Antiphase: 1 → 2 → 3 → 1 → . . .

• Decay rates: synchronous vs. asynchronous

σs ∼ −
1
2
µ′ faster than σap ∼ −

1
2
µ
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Long-time observation is async: NO DELAY
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• Given an arbitrary initial condition. . .
• Complex oscillations can be decomposed into a sum of

synchronous and antiphase oscillatory modes . . .
• The synchronous component decays fast . . .
• Observe some combination of antiphase oscillations . . .
⇒ observe asynchronous oscillations.
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Linear stability: τ 6= 0

• Hopf bifurcation to persistent oscillations.

• Synchronous:

Ts =
1
φ

(

Ez + Ew

Ew

)

.

• Antiphase

Tap =
1
φ

(

Ez + Ew

Ez

)

,
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Sync vs. Antiphase: τ 6= 0
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• Increasing µ ⇒ weakens specific IR
+ Cross-reactive IR ≫ specific IR

⇒ Couples variants
⇒ synchronous.

• Increasing µ′ ⇒ weakens cross-reactive IR
+ Specific IR ≫ cross-reactive

⇒ Decouples variants
⇒ asynchronous.
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Hopf bifurcation to asynchronous oscillations

• Near Hopf point.
τ = τh + ǫ2τ2.

• Multiple time scales t and s = ǫ2t .

• Expand y = ǫy (1) + ǫ2y (2) + . . .

• Expand the delay term:

yj(t−τ, s−ǫ2τ) = yj
∣

∣

τh
−ǫ2

(

τ2
∂yj

∂t

∣

∣

∣

∣

τh

+ τh
∂yj

∂s

∣

∣

∣

∣

τh

)

+O(ǫ4),
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Hopf bifurcation to asynchronous oscillations

• Near Hopf point.
τ = τh + ǫ2τ2.

• Multiple time scales t and s = ǫ2t .

• Expand y = ǫy (1) + ǫ2y (2) + . . .

• Expand the delay term:

yj(t−τ, s−ǫ2τ) = yj
∣

∣

τh
−ǫ2

(

τ2
∂yj

∂t

∣

∣

∣

∣

τh

+ τh
∂yj

∂s

∣

∣

∣

∣

τh

)

+O(ǫ4),
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Antiphase oscillations as basis
• The leading order, O(ǫ) problem is linear.

∂

∂t
~Y (1)

= J|
τh

· ~Y (1)
,

• Solution decomposed as a sum of the antiphase
eigenvectors.

x(1)
j = −iωhy(1)

j + e.d.t.,

y(1)
j =

n−1
∑

m=1

Am(s)vjmeiωht
+ c.c. + e.d.t.,

w(1)
j = 0 + e.d.t.,

• Am(s), m = 1,2, . . . ,n − 1 are slowly varying amplitudes.

• Determined by solvability condition at O(ǫ3).

dAm

ds
= τ2(f2 + ig2)Am + (f3 + ig3)Âm + (f4 + ig4)ÃnA∗

n−m,
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Two examples for n = 3

• (a) Pure antiphase with A1 6= 0, A2 = 0
1 → 2 → 3 → 1 → . . .

• (b) Combination of basis A1 = A2 6= 0
1 → 2 → 3 → 1 → . . .⊕ 1 → 3 → 2 → 1 → . . .
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Two examples for n = 3

(a)~y ∼ 2

√

−
f2 · (τ − τh)

f3









cos
(

θ(t) + 2π
3

)

cos
(

θ(t) + 4π
3

)

cos (θ(t) + 0)









ymax ∼
φEz

Ez + Ew

√

6

µ
(T − Tap),

(b)~y = 2

√

−
f2 · (τ − τh)

f3 + 2f4





−1
−1
2



 cos θ(t).
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• φ or EZ ↑ ⇒ larger amplitude.
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Transient and persistent chaotic oscillations
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Summary: synchronous oscillations

• Key model assumptions:
+ Variant specific + cross-reactive IR ⇒ sequential

dominance.
+ Variant specific µ ≪ cross-reactive µ′.

• Synchronous oscillations:
+ Identify IR efficacies as useful parameters.

EZ ≡
αβ

µ
and EW ≡

α′(nβ′)

µ′
.

+ A large parasite generation rate and a strong cross-reactive
IR favors oscillations.

+ Increases the sensitivity to persistent oscillations due to
external “forces” such as a delayed IR.

• Pulsating solutions ⇒ Y ≈ 0 for long times.
Poorly timed measurements of the system could be
misleading.
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Summary: sync. vs async. oscillations

• Asynchronous oscillations =
∑

antiphase.

• Synchronous: decay rate EW and is fast.
Antiphase: decay rate EZ and is slow.
Given arbitrary ICs, the likely observation is asynchronous
oscillations.

• The frequency of async. is higher than synch.
Forces the immune system to respond faster.

• Inc/dec EW relative to EZ strengthens/weakens coupling.
+ Strong coupling: synchronous oscillations.
+ “Balanced” coupling: sequential dominance.
+ Very weak coupling: uncoordinated oscillations.
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Open questions

• Less than complete set of minor variants.
Dynamics on network.

• Stronger physiologically based model.
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Model of Recker and Gupta

• Recker et al., Nature (2004) 429:555-558

• Recker and Gupta, Bull. Math. Bio (2006) 68: 821-835

• De Leenheer and Pilyugin, J. Biological Dynamics (2008)
2:102-120

• Mitchell and Carr, Bull. Math. Bio. (2009) 72:590-610

• Blyuss and Gupta, J. Math. Biol. (2009) 58:923-937

• Mitchell and Carr, submitted
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Warning! Taylor series with delay can be misleading
From R.D. Driver, “Ordinary and Delay Differential Equations”

x ′ = −2x(t) + x(t − τ)

Let x = eλt

λ = −2 + e−λτ

σ + 2 = e−στ cos(ωτ), ω = −e−στ sin(ωτ)

Consider the real-part equation

|σ + 2| ≤ e−στ

−στe

−στe−−1

2

1

σ+2

σ<0

σ < 0: Exponentially decay-
ing solutions
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Small delay: τ ≪ 1

x ′ = −2x(t) + x(t − τ)

x ′ = −2x(t) + [x(t) − τx ′(t) +
1
2
τ2x ′′(t) + . . .]

Let x = eλt and keep O(τ2)

λ = −2 + [1 − τλ+
1
2
τ2τ2]

1
2
τ2τ2 − (τ + 1)λ+ 1 = 0

λ =
(τ + 1)±

√

(τ + 1)2 − 2τ2

τ2

λ+ > 0 for all τ : Exponentially growing solutions.
Must validate analytical results with numerical simulations.
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