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Introduction to delays




Abstract

The SIR-epidemic model considers that recovered individuals
are permanently immune, while the SIS model considers
recovered individuals to be immediately re-susceptible. We
study the case of temporary immunity in an SIR-based model
with delayed coupling between the susceptible and removed
classes, which results in a coupled set of delay-differential
equations. We find conditions for which the non-zero endemic
steady-state becomes unstable to periodic outbreaks. We then
use analytical and numerical bifurcation analysis to describe
how the severity and period of the outbreaks depends on the
model parameters.




Delays in disease

"It is well understood in population biology that time delays of
significant magnitudes relative to the generation time of an
organism can induce oscillatory fluctuations in population
abundance." Anderson & May, Infectious Diseases of Humans

» Physical origins

+ Latency time from infected to infectious.
+ Infectious time.

+ Maturation time of infants.

+ Temporary Immunity.
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» Physical origins

+ Latency time from infected to infectious.
+ Infectious time.

+ Maturation time of infants.

+ Temporary Immunity.

» Modeling

+ Constant coefficient ODEs: exponential distribution of
immune times.
“Easy” to analyze.
+ Integro-differential Es: arbitrary distributions.
“Hard” to analyze.
+ Delay DEs: step distributions.
All immune for the same fixed time 7.




Overview

Our Goals:
» We study oscillatory epidemics with an SIR model.

+ Multiple-scales analysis of harmonic oscillations.
+ Matched-asymptotics analysis of pulsating oscillations.
+ Compare with numerical simulation and continuation methods.




Delay induced oscillations

» ODE: x(t)" = rx(t)
+ Letx(t) = exp(At)u.
+ Characteristic equation: A =r.
+ There exists a single real value )\, implying exponential

growth or decay.




Delay induced oscillations

» ODE: x(t)" = rx(t)
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Let x(t) = exp(At)u.

Characteristic equation: A =r.

There exists a single real value )\, implying exponential
growth or decay.

Let x(t) = exp(At)u.
Characteristic equation:
Let\=0c+iw

oc=re ?"cos(wr), w=—-re ?7sin(wr)

Transcendental equations with multiple solutions
Allows for oscillatory solutions to a first-order DDE.
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SIR Model with delay




SIR Model
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SIR Model

%? = pu[l—S(t)] - BI)S(t) +ryve “TI({t — 1),
= AOSO) — (),
?TT = I(t) = uR(t) — rye FTI(t —7)

» Equal birth and death rates.
+ Population size normalize to 1
+R() =1-[S(t) +1(1)]




SIR Model

%f — [l - S®)] - AIO)SE) + e I - 7),
= AOSO) — (),
?TT = I(t) = uR(t) — rye FTI(t —7)

» Equal birth and death rates.
+ Population size normalize to 1
+ R =1-[S(t) +1(1)]
» Partial temporary immunity
+ ~I(t — 7): Temporary immunity.
+ 0 <r, < 1: Fraction who are re-suscetible.
+ 0 < e #7 < 1: Fraction who survive to time 7.

% = —pN(t) = N(t) = N(0)e ™




Delay induced oscillations in SIR model
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Using DDE-Biftool, Engelborghs et al. and DDE-Solver, Thompson & Shampine




Steady-states and nondimensionalization

» Steady states (Rg = Basic reproductive humber)

1 ERO—].
Sc=—, lc= [3(7”), where Rg = _h
~ pY




Steady-states and nondimensionalization

» Steady states (Ro = Basic reproductive humber)

E(Rog—1
1 I —ﬁ( o ) whereRo:i
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» Deviations from non-zero endemic state

| =1.(1+y), S=Sc(1+ \/Ex)




Nondimensionalized model

Susceptible: 3—): = -y —ex(a+by)+ry(t—17),
. d
Infectious: dit/ =x(1+y),
where
e=/p<l
r = r'y—qe“”, 0<r«<1

wEy
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ca — o+ Ble

— b=S:.vI
N Ve

\ = O(i), f= 0(:2» r=0(1)
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Hopf bifurcation to oscillations




Hopf bifurcation to periodic outbreaks

> (x,¥) = (0,0) = (S(1),1(t)) = (Sc, lc)-




Hopf bifurcation to periodic outbreaks

> (X,y) =(0,0) = (S(1),1(t)) = (Sc, le)-
» Full immunity,r =0
Weakly (¢ < 1) stable focus.




Hopf bifurcation to periodic outbreaks

> (X,y) =(0,0) = (S(t), I(t)) = (Sc, le)-
» Full immunity, r =0
Weakly (¢ < 1) stable focus.

» Partial immunity, r £ 0
Examine linear stability

x\ [ ue
y - Ve/\t )
Characteristic equation for A:

Ntear+1l—-re =0




Linear-stability results

Frequency w Immunity parameter r
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Small amplitude and multiple scales




Small-amplitude outbreaks for low resusceptibility

» Weak immunity = r = er;. Local to Hopf.




Small-amplitude outbreaks for low resusceptibility

» Weak immunity = r = er;. Local to Hopf.
» Multiple-scales analysis for DDEs, T = et.

d_9_.98
dt ~ ot oT

y(t) = M2yi(t,T) +eya(t, T) + ...

y(t—7) — y({t—7,T —er)

y(t—T,T)—ETaiTy(t -7,T)+....




Warning! Taylor series with delay can be misleading

From R.D. Driver, “Ordinary and Delay Differential Equations”
X" = =2x(t) + x(t — 7)

Letx = e

A=-2+e M

oc+2=e"7"cos(wr), w=—e 77sin(wr)

Consider the real-part equation
lo+2| <e 7
a+2
e—O'T

o < 0: Exponentially decay-
0<0 - ing solutions

—0T




Small delay: 7 <« 1

X' = =2x(t) +x(t — 1)
X/ = —2x(t) + [X(t) — 7X'(t) + %sz”(t) b
Let x = e and keep O(7?)

1
A=-24+[1-7A+ ETZTZ]

1
57'27'2—(74-1))\4-1:0

(14+1)++/(1+1)2 — 272

A= >

T

As > O for all 7: Exponentially growing solutions.
Must validate analytical results with numerical simulations.




Amplitude and frequency

» y1 =A(T)el +c.c.

a

A+ =
T— 2

i i i
A— 6yAyZA — SNA(T —7)e '




Amplitude and frequency

» y1 =A(T)el +c.c.

a [ [ Zir
SA- 6yAyZA — AT —7)e™!

Ar = —
T 2

» Periodic solutions: A(t) = Bel“

0 = —aB-rBsinT,
1 r
= —ZB?--cos
w 6 2 T

Find w = w(B) but not B = B(r).




Amplitude and frequency

» y1 =A(T)el +c.c.

a [ [ Zir
SA- 6yAyZA — AT —7)e™!

Ar = —
T 2

» Periodic solutions: A(t) = Bel“

0 = —aB-rBsinT,
1 r
= —ZB?--cos
w 6 2 T

Find w = w(B) but not B = B(r).
» Must go to higher order in analysis. r = €°r.

Ar = C1A + Co|A[2A + c3|A*A — 'ErgA(T —r)e i




Modified multiple-scale analysis
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Large amplitude and patched asymptotics




Pulsating outbreaks for high re-susceptibility
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Pulsating outbreaks for high re-susceptibility

> Inner i t € [to,to]: y > 1 and the delay term y(t — 7) ~ —1
» Outer I t € [ty,to+7]: y and y(t — 7) ~ —1
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Pulsating outbreaks for high re-susceptibility

> Inner i t € [to,to]: y > 1 and the delay term y(t — 7) ~ —1
» Outer I t € [ty,to+7]: y and y(t — 7) ~ —1

> Innerll:t € [to+ 7.ty +7]:y(t—7)>1landy =~ —1

» Outerll: t € [ty + 7t yand y(t —7) ~ —1




Patching

» Find approximate solutions in each subinterval.
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» Find approximate solutions in each subinterval.
» Patch them together at the end points.

+ Inner | (t,) = Outer 1 (t,)

+ Outer 1 (to + 7) = Inner Il (to + 7)

+ Inner Il (to’ +7) = Outer Il (t, + 7)
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Patching

» Find approximate solutions in each subinterval.
» Patch them together at the end points.
+ Inner | (t,) = Outer 1 (t,)
+ Outer 1 (to + 7) = Inner Il (to + 7)
+ Inner Il (to’ +7) = Outer Il (t, + 7)
» End resultis a map ...
+ Starting at Inner | (to)
+ End at Outer Il (t;)
» At time t,, given the values (Xn,Yn) ...

+ We can predict the time of the next pulse t,.; and hence
the period Py,.

+ We can predict the values of the susceptible and infectious
populations at the next pulse (Xnt1, Yn+1)-

+ Thus, we have a map

(Xn, ¥n,ta) = (Xnt1, Ynt1, thsa)-




Map

2Xn11

Pn

2 r
Pn + e[ébxg + XnyPn — Xn V7 (21 — Pn)
1
—5(a- b)P7]
4
P2(1—r)+2(2r — 1)XaPn — 471Xn + gerbxnz(r —Pp)

tn+1 — 1y




Map

2Xn11

0
Pn

r

2
Pn + e[ébxg + XnyPn — Xn V7 (21 — Pn)
1
—5(a- b)P?]
4
P2(1—r) +2(2r — 1)xnPp — 471X + gerbxnz(r —Pp)
tn+l - tn

Fixed points of the map = periodic solutions of the flow

Xy = T— €6Tr2[(2 +r)y+2(1—r)b]

67’2
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Summary




Summary: as r increases...

» Hopf bifurcation

+ Severity and period of epidemics increase
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» Low-resusceptibility

+ Multiple Scale analysis local to the bifurcation
+ Period related to natural relaxation period




Summary: as r increases...

» Hopf bifurcation
+ Severity and period of epidemics increase
» Low-resusceptibility
+ Multiple Scale analysis local to the bifurcation
+ Period related to natural relaxation period
» High-resusceptibility
+ Derive map based on pulsating epidemics
Period locked to delay time
Amplitude fixed to period by underlying Hamiltonian
As T increases, period and intensity increase
As 3 increases, period and intensity decrease

+ + + +
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