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Abstract

The SIR-epidemic model considers that recovered individuals
are permanently immune, while the SIS model considers
recovered individuals to be immediately re-susceptible. We
study the case of temporary immunity in an SIR-based model
with delayed coupling between the susceptible and removed
classes, which results in a coupled set of delay-differential
equations. We find conditions for which the non-zero endemic
steady-state becomes unstable to periodic outbreaks. We then
use analytical and numerical bifurcation analysis to describe
how the severity and period of the outbreaks depends on the
model parameters.



D
ALLAS, TEXAS

S
O

U
T
H

E
R
N

   M
ETHODIST   U

N
IV

E
R

S
IT

Y

Delays in disease
”It is well understood in population biology that time delays of
significant magnitudes relative to the generation time of an
organism can induce oscillatory fluctuations in population
abundance." Anderson & May, Infectious Diseases of Humans

◮ Physical origins

+ Latency time from infected to infectious.
+ Infectious time.
+ Maturation time of infants.
+ Temporary Immunity.

◮ Modeling

+ Constant coefficient ODEs: exponential distribution of
immune times.
“Easy” to analyze.

+ Integro-differential Es: arbitrary distributions.
“Hard” to analyze.

+ Delay DEs: step distributions.
All immune for the same fixed time τ .
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Overview

Our Goals:
◮ We study oscillatory epidemics with an SIR model.

+ Multiple-scales analysis of harmonic oscillations.

+ Matched-asymptotics analysis of pulsating oscillations.

+ Compare with numerical simulation and continuation methods.
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Delay induced oscillations

◮ ODE: x(t)′ = rx(t)
+ Let x(t) = exp(λt)u.
+ Characteristic equation: λ = r .
+ There exists a single real value λ, implying exponential

growth or decay.
◮ DDE: x(t)′ = rx(t − τ)

+ Let x(t) = exp(λt)u.
+ Characteristic equation: λ = re−λτ .
+ Let λ = σ + iω

σ = re−στ cos(ωτ), ω = −re−στ sin(ωτ)

+ Transcendental equations with multiple solutions
+ Allows for oscillatory solutions to a first-order DDE.
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SIR Model

dS
dt

= µ[1 − S(t)] − βI(t)S(t) + rγγe−µτ I(t − τ),

dI
dt

= βI(t)S(t) − (µ + γ)I(t),

dR
dt

= γI(t) − µR(t) − rγγe−µτ I(t − τ)

◮ Equal birth and death rates.
+ Population size normalize to 1

+ R(t) = 1 − [S(t) + I(t)]

◮ Partial temporary immunity
+ γI(t − τ): Temporary immunity.

+ 0 ≤ rγ ≤ 1: Fraction who are re-suscetible.
+ 0 < e−µτ ≤ 1: Fraction who survive to time τ .

dN(t)

dt
= −µN(t) → N(t) = N(0)e−µt
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Delay induced oscillations in SIR model

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

r
1

m
ax

(x
1)

300 305 310 315 320 325
−4

−2

0

2

4

6

8

10

t

300 302 304 306 308 310 312 314 316 318 320
−4

−2

0

2

4

6

8

10

t

Using DDE-Biftool, Engelborghs et al. and DDE-Solver, Thompson & Shampine
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Steady-states and nondimensionalization

◮ Steady states (R0 = Basic reproductive number)

Sc =
1
R0

, Ic =

µ
β (R0 − 1)

1 − rγγ
µ+γ

, where R0 =
β

µ + γ

◮ Deviations from non-zero endemic state

I = Ic(1 + y), S = Sc(1 +

√

Ic
Sc

x)

s = β
√

Sc Ic t then let s → t
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Nondimensionalized model

Susceptible:
dx
dt

= −y − ǫx(a + by) + ry(t − τ),

Infectious:
dy
dt

= x(1 + y),

where
ǫ =

√
µ ≪ 1

r =
rγγ

µ + γ
e−µτ , 0 ≤ r < 1

ǫa =
µ + βIc
β
√

Sc Ic
, ǫb = Sc

√

Ic

γ = O(
1
µ

), β = O(
1
µ2 ), r = O(1)
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Hopf bifurcation to periodic outbreaks

◮ (x , y) = (0, 0) ⇒ (S(t), I(t)) = (Sc , Ic).
◮ Full immunity, r = 0

Weakly (ǫ ≪ 1) stable focus.
◮ Partial immunity, r 6= 0

Examine linear stability
(

x
y

)

=

(

ueλt

veλt

)

,

Characteristic equation for λ:

λ2 + ǫaλ + 1 − re−λτ = 0
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Linear-stability results

Frequency ω
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Small-amplitude outbreaks for low resusceptibility

◮ Weak immunity ⇒ r = ǫr1. Local to Hopf.
◮ Multiple-scales analysis for DDEs, T = ǫt .

d
dt

=
∂

∂t
+ ǫ

∂

∂T

y(t) = ǫ1/2y1(t , T ) + ǫy2(t , T ) + . . .

y(t − τ) → y(t − τ, T − ǫτ)

y(t − τ, T ) − ǫτ
∂

∂T
y(t − τ, T ) + . . . .
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Warning! Taylor series with delay can be misleading
From R.D. Driver, “Ordinary and Delay Differential Equations”

x ′ = −2x(t) + x(t − τ)

Let x = eλt

λ = −2 + e−λτ

σ + 2 = e−στ cos(ωτ), ω = −e−στ sin(ωτ)

Consider the real-part equation

|σ + 2| ≤ e−στ

−στe

−στe−−1

2

1

σ+2

σ<0

σ < 0: Exponentially decay-
ing solutions
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Small delay: τ ≪ 1

x ′ = −2x(t) + x(t − τ)

x ′ = −2x(t) + [x(t) − τx ′(t) +
1
2
τ2x ′′(t) + . . .]

Let x = eλt and keep O(τ2)

λ = −2 + [1 − τλ +
1
2
τ2τ2]

1
2
τ2τ2 − (τ + 1)λ + 1 = 0

λ =
(τ + 1) ±

√

(τ + 1)2 − 2τ2

τ2

λ+ > 0 for all τ : Exponentially growing solutions.
Must validate analytical results with numerical simulations.
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Amplitude and frequency

◮ y1 = A(T )eit + c.c.

AT = −a
2

A − i
6
|A|2A − i

2
r1A(T − τǫ)e−iτ

◮ Periodic solutions: A(t) = Beiωt

0 = −aB − r1B sin τ,

ω = −1
6

B2 − r
2

cos τ

Find ω = ω(B) but not B = B(r).
◮ Must go to higher order in analysis. r = ǫ2r3.

AT = c1A + c2|A|2A + c3|A|4A − i
2

r3A(T − τǫ)e−iτ
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Modified multiple-scale analysis
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Pulsating outbreaks for high re-susceptibility
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0
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◮ Inner I: t ∈ [t0, t
′

0]: y ≫ 1 and the delay term y(t − τ) ≈ −1

◮ Outer I: t ∈ [t
′

0, t0 + τ ]: y and y(t − τ) ≈ −1

◮ Inner II: t ∈ [t0 + τ, t
′

0 + τ ]: y(t − τ) ≫ 1 and y ≈ −1

◮ Outer II: t ∈ [t
′

0 + τ, t1]: y and y(t − τ) ≈ −1
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Patching

◮ Find approximate solutions in each subinterval.
◮ Patch them together at the end points.

+ Inner I (t
′

0) = Outer 1 (t
′

0)
+ Outer 1 (t0 + τ) = Inner II (t0 + τ)
+ Inner II (t0′ + τ) = Outer II (t

′

0 + τ)

◮ End result is a map ...
+ Starting at Inner I (t0)
+ End at Outer II (t1)

◮ At time tn, given the values (xn, yn) . . .
+ We can predict the time of the next pulse tn+1 and hence

the period Pn.
+ We can predict the values of the susceptible and infectious

populations at the next pulse (xn+1, yn+1).
+ Thus, we have a map

(xn, yn, tn) 7→ (xn+1, yn+1, tn+1).
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◮ At time tn, given the values (xn, yn) . . .
+ We can predict the time of the next pulse tn+1 and hence

the period Pn.
+ We can predict the values of the susceptible and infectious

populations at the next pulse (xn+1, yn+1).
+ Thus, we have a map

(xn, yn, tn) 7→ (xn+1, yn+1, tn+1).
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Map

2xn+1 = Pn + ǫ[
2
3

bx2
n + xnγPn − xnγ

r
1 − r

(2τ − Pn)

−1
2
(a − b)P2

n ]

0 = P2
n(1 − r) + 2(2r − 1)xnPn − 4τ rxn +

4
3
ǫrbx2

n (τ − Pn)

Pn = tn+1 − tn

Fixed points of the map ⇒ periodic solutions of the flow

xf = τ − ǫτ2

6r
[(2 + r)γ + 2(1 − r)b]

Pf = 2τ − ǫτ2

3r
[(2 + r)γ + 2b],
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Amplitude and period
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Outline

Introduction to delays

SIR Model with delay

Hopf bifurcation to oscillations

Small amplitude and multiple scales

Large amplitude and patched asymptotics

Summary
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Summary: as r increases...

◮ Hopf bifurcation
+ Severity and period of epidemics increase

◮ Low-resusceptibility
+ Multiple Scale analysis local to the bifurcation

+ Period related to natural relaxation period

◮ High-resusceptibility
+ Derive map based on pulsating epidemics

+ Period locked to delay time

+ Amplitude fixed to period by underlying Hamiltonian

+ As τ increases, period and intensity increase

+ As β increases, period and intensity decrease
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