/* Data for examining the Taylor Rule. Monthly data from January, 1984 through July, 2007 on Fed Funds rate, Inflation rate (annual rates) and Industrial Production Index. Fed Funds and Industrial Production data was obtained from the Federal Reserve Board Website while the Inflation rate (using CPI, Urban Dwellers) was obtained from the Bureau of Labor Statistics Website. */ data Taylor; input ff inf ip; datalines; 9.56 4.3 53.0653 9.59 4.7 53.6415 9.91 4.9 53.9027 10.29 4.6 54.199 10.32 4.3 54.3517 11.06 4.3 54.6017 11.23 4.3 54.8556 11.64 4.3 54.9615 11.3 4.3 54.843 9.99 4.3 55.0752 9.43 4.2 55.2701 8.38 4 55.476 8.35 3.5 55.2456 8.5 3.6 55.0386 8.58 3.8 55.4836 8.27 3.6 55.3108 7.97 3.6 55.3992 7.53 3.7 55.4914 7.88 3.5 55.1706 7.9 3.4 55.538 7.92 3.2 55.6156 7.99 3.2 55.5081 8.05 3.5 55.8942 8.27 3.8 56.1309 8.14 4 56.7912 7.86 3.2 56.4315 7.48 2.2 56.2835 6.99 1.6 56.415 6.85 1.7 56.4906 6.92 1.8 56.3058 6.56 1.7 56.6212 6.17 1.6 56.7882 5.89 1.8 56.9172 5.85 1.6 57.124 6.04 1.3 57.4026 6.91 1.2 57.9249 6.43 1.4 57.7593 6.1 1.9 58.586 6.13 2.8 58.6208 6.37 3.7 58.9181 6.85 3.7 59.3766 6.73 3.7 59.6053 6.58 3.9 60.024 6.73 4.3 60.3065 7.22 4.3 60.6809 7.29 4.4 61.6967 6.69 4.5 62.0394 6.77 4.3 62.4401 6.83 4.1 62.3116 6.58 3.9 62.4233 6.58 3.8 62.6522 6.87 4 63.2068 7.09 4 63.139 7.51 4 63.2511 7.75 4.1 63.3399 8.01 4.1 63.4127 8.19 4.2 63.6615 8.3 4.3 64.0278 8.35 4.2 64.2298 8.76 4.4 64.5087 9.12 4.5 65.0253 9.36 4.6 64.3472 9.85 4.9 64.2605 9.84 5 64.3407 9.81 5.3 63.7696 9.53 5.2 63.8971 9.24 5.1 63.1718 8.99 4.6 63.8273 9.02 4.4 63.6893 8.84 4.6 63.5514 8.55 4.7 63.6626 8.45 4.6 63.8002 8.23 5.2 63.6781 8.24 5.3 64.5966 8.28 5.2 64.8737 8.26 4.7 64.7165 8.18 4.4 64.8029 8.29 4.7 64.9737 8.15 4.8 64.8337 8.13 5.7 65.0299 8.2 6.2 65.0568 8.11 6.4 64.5541 7.81 6.2 63.8352 7.31 6.3 63.3216 6.91 5.6 62.7892 6.25 5.3 62.3718 6.12 4.8 62.0154 5.91 4.8 62.2346 5.78 5 62.7107 5.9 4.7 63.4509 5.82 4.4 63.6299 5.66 3.8 63.7836 5.45 3.4 64.4934 5.21 2.8 64.3766 4.81 3.1 64.2559 4.43 3 64.1986 4.03 2.7 63.8657 4.06 2.8 64.4515 3.98 3.2 65.0605 3.73 3.2 65.4299 3.82 3 65.8281 3.76 3 66.0675 3.25 3.2 66.6406 3.3 3.1 66.3888 3.22 3 66.4531 3.1 3.3 66.8713 3.09 3.1 67.1332 2.92 3 67.0312 3.02 3.3 67.7403 3.03 3.2 67.8209 3.07 3 67.6938 2.96 3.2 68.1078 3 3.2 68.049 3.04 3 67.965 3.06 2.8 68.2157 3.03 2.8 68.2135 3.09 2.8 68.6673 2.99 2.8 69.2774 3.02 2.7 69.5733 2.96 2.8 70.0166 3.05 2.5 70.2242 3.25 2.5 70.3425 3.34 2.7 71.3088 3.56 2.4 71.8845 4.01 2.3 72.3899 4.25 2.5 72.6358 4.26 2.7 73.0191 4.47 2.9 73.5168 4.73 3 73.7681 4.76 2.6 74.5516 5.29 2.6 75.1657 5.45 2.6 76.1008 5.53 2.9 76.4579 5.92 2.9 76.4243 5.98 2.8 76.5856 6.05 3.1 76.4805 6.01 3.1 76.5016 6 3 76.8082 5.85 2.8 76.3544 5.74 2.6 77.3097 5.8 2.5 78.0567 5.76 2.7 77.9847 5.8 2.6 78.1 5.6 2.5 78.4024 5.56 2.8 77.6929 5.22 2.7 78.9049 5.31 2.8 78.6724 5.22 2.8 79.5866 5.24 2.8 80.1623 5.27 2.8 81.0545 5.4 2.9 81.2816 5.22 2.8 81.7908 5.3 3 82.3528 5.24 3.1 82.3411 5.31 3.3 83.0962 5.29 3.4 83.8605 5.25 3 83.9386 5.19 3 85.0966 5.39 2.8 86.1119 5.51 2.4 85.7796 5.5 2.2 86.4615 5.56 2.2 86.9728 5.52 2.2 87.2844 5.54 2.3 88.6726 5.54 2.2 89.4698 5.5 2.1 90.1325 5.52 1.9 91.273 5.5 1.7 91.8026 5.56 1.6 92.598 5.51 1.4 92.596 5.49 1.4 92.3817 5.45 1.4 92.978 5.49 1.7 93.4553 5.56 1.6 92.8475 5.54 1.7 92.4124 5.55 1.6 94.9061 5.51 1.4 94.654 5.07 1.5 95.5102 4.83 1.5 95.6164 4.68 1.6 96.1742 4.63 1.7 96.592 4.76 1.7 97.4528 4.81 1.7 97.3342 4.74 2.3 97.7118 4.74 2.1 98.6636 4.76 2 98.4215 4.99 2.1 98.9558 5.07 2.3 99.5832 5.22 2.6 99.2121 5.2 2.6 100.808 5.42 2.6 101.5626 5.3 2.7 102.4154 5.45 2.8 102.6453 5.73 3.2 103.034 5.85 3.8 103.7685 6.02 3 104.5574 6.27 3.1 104.6515 6.53 3.7 104.8578 6.54 3.6 104.7334 6.5 3.4 104.1551 6.52 3.5 104.6728 6.51 3.5 104.2402 6.51 3.4 103.8462 6.4 3.4 103.1605 5.98 3.7 102.5699 5.49 3.5 102.0819 5.31 3 101.6519 4.8 3.2 101.2924 4.21 3.6 100.5362 3.97 3.2 99.8852 3.77 2.7 99.4418 3.65 2.7 98.7524 3.07 2.6 98.4261 2.49 2.1 97.7373 2.09 1.9 97.5138 1.82 1.6 97.6983 1.73 1.2 98.1325 1.74 1.1 98.2565 1.73 1.4 99.0539 1.75 1.6 99.2831 1.75 1.2 99.8673 1.75 1.1 101.0209 1.73 1.5 100.5373 1.74 1.7 100.9357 1.75 1.5 100.9751 1.75 2 100.4555 1.34 2.3 100.9585 1.24 2.5 100.5236 1.24 2.6 101.0338 1.26 3 101.0429 1.25 3.1 101.2481 1.26 2.2 100.4811 1.26 2.1 100.4125 1.22 2.1 100.9162 1.01 2.1 101.1137 1.03 2.2 100.926 1.01 2.3 101.7671 1.01 2 101.5934 1 1.8 102.5976 0.98 1.9 102.522 1 2 102.5854 1.01 1.7 103.2286 1 1.7 103.119 1 2.3 103.714 1 2.9 104.2974 1.03 3.2 103.6417 1.26 3 104.4774 1.43 2.7 105.028 1.61 2.5 104.8313 1.76 3.2 105.6252 1.93 3.6 105.6225 2.16 3.3 106.1945 2.28 2.9 106.6925 2.5 3 107.4049 2.63 3.1 107.1613 2.79 3.4 107.4095 3 2.9 108.0171 3.04 2.5 108.4822 3.26 3.1 108.6262 3.5 3.6 109.0229 3.62 4.7 108.0412 3.78 4.4 109.7383 4 3.5 110.8724 4.16 3.4 111.3651 4.29 4 112.2558 4.49 3.6 112.0493 4.59 3.4 112.5613 4.79 3.6 113.6589 4.94 4.1 113.4542 4.99 4.3 114.4758 5.24 4.2 114.9064 5.25 3.9 115.3983 5.25 2.1 115.3415 5.25 1.3 114.2717 5.25 2 114.0956 5.24 2.5 115.4099 5.25 2.1 114.6532 5.26 2.4 114.5703 5.26 2.8 115.3842 5.25 2.6 115.7881 5.25 2.7 115.7344 5.25 2.7 116.4562 5.26 2.4 117.1405 ; /* Check out the Dallas Federal Reserve Publication "Measuring the Taylor Rule's Performance" by Adriana Z. Fernandez and Alex Nikolsko-Rzhevskyy that appeared in Economic Letter, Vol. 2, No. 6, June, 2007, pp. 1 - 8. In particular, I am going to use the modeling approach, at least in part, of Clarida, Gali, and Gertler (1998). See Table 1 in the Fernandez and Nikolsko-Rzhevskyy article. */ /* Here we get ready to model the output gap using a quadratic trend on the log of industrial production. */ data Taylor; set Taylor; t = _n_; t2 = t*t; lip = log(ip); proc reg data = Taylor; *model lip = t; model lip = t t2; output r=ogap out=ogap; data complete; set Taylor ogap; merge Taylor ogap; /* Here we are preparing the data for different modeling approaches. */ data complete; set complete; y = ff - 2 - inf; x1 = inf - 2; x2 = ogap; ylag1 = lag(y); ylag2 = lag2(y); dy = y - lag(y); dx1 = x1 - lag(x1); dx2 = x2 - lag(x2); dylag1 = lag(dy); dylag2 = lag2(dy); run; /* This is the "traditional (old fashion)" approach for modeling time series regressions. In addition to the explanatory variables we put in a time trend to model the trends in the dependent and explanatory variables. We also autocorrelation in the errors if necessary. Also, as suggested by Clarida, Gali, and Gertler (1998) we form a "forward looking" equation by lagging the dependent variable (the Fed Funds rate_ by one or two lags depending on the foresight of the Fed Open Market Committee members. */ proc reg data = complete; model ylag2 = x1 x2 t/noint; output r=resid out=autoc; run; proc arima data = autoc; identify var=resid; run; /* The residuals look to be autocorrelated of third order because the acf of the OLS residuals damps out while the pacf has 3 spikes and then cuts off. ^*/ proc autoreg data = complete; model ylag1 = x1 x2 t/noint nlag=3; model ylag2 = x1 x2 t/noint nlag=3; run; /* In the ylag2 equation we get the expected sign of the coefficients of the Taylor Rule and they are statistically significant while we conclude that the foresight of the Fed Open Market Committee is 2 months. */ /* Here we try the "modern (unit root)" approach for modeling time series regressions as in the Taylor Rule. All of the variables have "unit roots" in them thus we must work with the differenced form of the Taylor Rule equation. */ /* In the first set of regressions we don't allow for autocorrelated errors while in the second set of regressions we do. It is proper to consider the second set of regressions because there is a need to adjust for autocorrelated errors in the regression. Using this approach, with a 2 month foresight, we get the the correct a priori signs of the coefficients and they are statistically significant. */ proc reg data = complete; model dy = dx1 dx2/noint; model dylag1 = dx1 dx2/noint; model dylag2 = dx1 dx2/noint; run; proc autoreg data = complete; model dylag2 = dx1 dx2/noint nlag=2; model dylag2 = dx1 dx2/noint nlag=1; run;