T. Fomby Fall 2016

EXERCISE 2

Purpose: To learn some of the basic concepts of bivariate regression analysis. **This exercise is due on Tuesday, September 13.**

Consider the following data:

<u>Y</u>	<u>X</u>
8	1
7	2
13	3
11	4
16	5
15	6

Using the above data, compute the following quantities:

1) $\overline{y} = \sum y_i / n$ 2) $\overline{x} = \sum x_i / n$ 3) $\hat{\beta}_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}$ 4) $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$ 5) $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$ 6) $\hat{u}_i = y_i - \hat{y}_i$ 7) SST = $\sum (y_i - \overline{y})^2$ (Total Sum of Squares) 8) SSE = $\sum (\hat{y}_i - \overline{y})^2$ (Explained Sum of Squares) 9) SSR = $\sum \hat{u}_i^2$ (Residual Sum of Squares) 10) $R^2 = \frac{SSE}{TSS}$ (Coefficient of Determination) 11) Construct the following Analysis of Variance Table:

Source	<u>df</u>	<u>MS</u>	<u>F</u>	<u>p-value</u>
SSE	k	$\frac{SSE}{k}$	MSE MSR	$\Pr(F_{k,n-k-1} > F_0)$
SSR	n-k-1	$\frac{SSR}{n-k-1}$		
SST	n-1			

The number of observations is denoted by n while k denotes the number of explanatory variables in your multiple regression model not counting the intercept term.

12) $\hat{\sigma}^{2} = \frac{\Sigma \hat{u}_{1}^{2}}{n-k-1}$ 13) $\hat{\sigma} = \sqrt{\hat{\sigma}^{2}}$ (Standard Error of Regression) 14) $se(\hat{\beta}_{0}) = \sqrt{\frac{\hat{\sigma}^{2} \Sigma x_{1}^{2}}{n \Sigma (x_{1} - \bar{x})^{2}}}$ 15) $t_{\hat{\beta}_{0}} = \frac{\hat{\beta}_{0}}{se(\hat{\beta}_{0})}$ 16) $se(\hat{\beta}_{1}) = \sqrt{\frac{\hat{\sigma}^{2}}{\Sigma (x_{i} - \bar{x})^{2}}}$ 17) $t_{\hat{\beta}_{1}} = \frac{\hat{\beta}_{1}}{se(\hat{\beta}_{1})}$ 18) $\Pr(\hat{\beta}_{0} - t_{n-k-1,0.025} \cdot se(\hat{\beta}_{0}) < \beta_{0} < \hat{\beta}_{0} + t_{n-k-1,0.025} \cdot se(\hat{\beta}_{0})) = 0.95$ 19) $\Pr(\hat{\beta}_{1} - t_{n-k-1,0.025} \cdot se(\hat{\beta}_{1}) < \beta_{1} < \hat{\beta}_{1} + t_{n-k-1,0.025} \cdot se(\hat{\beta}_{1})) = 0.95$ 20) Suppose x = 2.5. Compute $\hat{\gamma}$. (Prediction)