TOPICS TO CONSIDER FOR FINAL EXAM

The Final Exam in this class is scheduled for Thursday, December 10, 3:00 – 6:00 pm in Room 195 Crow. Don't spend a whole lot of time memorizing formulas. For the exam I will make available to you the formulas on the front and back covers of your Hill, et. al. textbook. You should commit to memory the ANOVA table I presented in class. You will not be able to use your i-phone or personal calculator during the exam. We will be providing you a 4-function calculator if you need it for elementary calculations.

In terms of other hints I would suggest that you go over the Mid-term review document that is posted on the class website, the Mid-term Exam Key and the keys to all QQs and Exercises. The final exam is cumulative (approximately 60% since mid-term and 40% on the mid-term material) so that you will need to review all previous material. Since the mid-term we have covered Exercises 5-9 with Exercise 9 being discussed in class but not handed in and QQs 6-10.

Since the last mid-term we have covered:

- **Heteroskedasticity**, its effects on least squares estimates, using residual plots to diagnose heteroskedasticity, tests for heteroskedasticity like the White's test, transforming a heteroskedasticity regression equation to an equation with homoscedastic errors and then running OLS (i.e. Weighted Least Squares), Aitken's Theorem, White's heteroskedasticity-robust standard errors and t-statistics for the OLS estimates (Chapter 8). As another example of the application of weighted least squares I discussed in some detail the Linear Probability Model. See Section 8.6. Also I will send through your e-mail account the Power Point for this chapter (8).
- Multiple Regression on time series. (See Chapters 9 and 12 in your textbook plus the PPTs I sent to you on these chapters.) The phenomenon of spurious regression, stationary versus non-stationary time series, random walks without and with drift, Augmented Dickey-Fuller tests for unit roots, building an ARDL(p,q) time series model on stationary variables using the AIC and SBC goodness-of-fit criteria. See the SAS programs spurious.sas, spurious2.sas, and spurious3.sas for additional discussion of the spurious regression problem. (Especially see the notes in the programs.)
- Study the idea of **impact, interim and total multipliers** that are inherent in the explanation of the dynamics between a dependent variable and explanatory variable in a time series regression.

•	I am expecting you to have at least a rudimentary understanding of the idea of cointegration and the generalization of the ARDL(p,q) model to the ECM model implied by cointegration. See Chapter 12 in your textbook and the accompanying PPT.