
ECO 5375-701       Prof. Tom Fomby 

Eco and Bus Forecasting      Fall 2016 

 

 

EXERCISE 10 

KEY 

 

 

Purpose:  To learn how to build an equal-lag-length VAR for a set of stationary time 

series and to use it in an out-of-sample forecasting experiment to determine if a 

supplementary variable is useful in helping us forecast a target variable.  This 

exercise is due Tuesday, November 29. 

 

a) Recall the Series M data set that Box and Jenkins introduced in their seminal 1970 

textbook.  For a plot of the data run the SAS program BJ_M_Series.sas.  Cut and 

Paste the second graph produced by this program, namely, the plot of the smoothed, 

standardized versions of the leading (x) and target (y) series.  You can see that the 

two series seem to be related but the issue is if x is related enough to y so that x can 

be used to improve our forecasts of y. 

 

 
  

b) To find out if x can be a useful “supplementary” variable for helping us forecast the 

target series y, we need to run an out-of-sample forecasting experiment (horserace) 

that compares a Box-Jenkins model’s forecasting accuracy of y versus an equal-lag-

length VAR’s forecasting accuracy of y.  Briefly describe to me the nature of an out-
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of-forecasting experiment and how it can be used to determine if x is a useful 

supplementary variable for forecasting y.  Answer: You split your data into two parts 

– the in-sample data set and the out-of-sample data set.  Here we decided to use 

observations 1 – 120 as the in-sample data set and observations 121 – 150 as the out-

of-sample data set.  Then to gauge the potential usefulness of the “supplementary” 

variable in helping one forecast a target variable, we run a forecasting horserace 

over the out-of-sample data between a Box-Jenkins model of the target series (the 

benchmark forecasting method) and an equal-lag-length VAR which contains both 

the target variable and the supplementary variable.  If the forecasting accuracy for the 

target variable produced by the VAR is better than the forecasting accuracy offered 

by the Box-Jenkins model, we conclude that the supplementary variable is useful.  In 

order to strengthen our conclusion on the usefulness of the supplementary variable, 

we conduct a Diebold-Mariano test for significant difference between the VAR and 

Box-Jenkins model, and if the VAR produces a statistically superior forecasting 

accuracy of the target variable, we have stronger conviction that the proposed 

supplementary variable is useful.  

 

c) A useful SAS program for this part of the exercise is M Series-Unit Root.sas.  Before 

we can run an out-of-sample forecasting experiment we need to determine the Box-

Jenkins model for y and then, separately, an equal-lag-length VAR for x and y.  As it 

turns out, diligent work by the student, vis-à-vis a unit root test would determine that 

the y series has a unit root in it and needs to be differenced in order to make it 

stationary.  Also, by diligent work, the student can determine that a log 

transformation of the y-series is not needed before differencing.  The same can be 

said for the x series.  Using the first 120 observations (the in-sample data set) is can 

be determined by (a) using the sample ACF and PACF (b) the P-Q box, and (c) 

overfitting exercises that the best Box-Jenkins model for the y series is the 

ARIMA(1,1,1) model.  Thus we will use it as our “benchmark” forecasting model for 

y in the out-of-sample experiment.  Using the first 120 observations, report below the 

ARIMA(1,1,1) model that you have estimated for the y series.  Be sure and include 

the standard errors of the estimates, the AIC and SBC goodness-of-fit measures of the 

fitted model, and the Box-Pierce-Ljung Q statistic for white noise residuals (lag = 

24). 

 

 Answer:    

 

 Deviation-from-Mean Form: 

 

 ∆𝑦𝑡 −  0.456467 = 0.85054(∆𝑦𝑡−1 − 0.456467) +  𝑎̂𝑡 −  0.62568𝑎̂𝑡−1 
                        (0.31389)     (0.10275)                                                (0.15270) 

 

 AIC = 426.1963 

 SBC = 434.5337 

 Q(24) = 12.54 (p=0.9453) 
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Intercept Form: 

 

 ∆𝑦𝑡 = 0.068224 +  0.85054∆𝑦𝑡−1 + 𝑎̂𝑡 −  0.62568𝑎̂𝑡−1 
                                             (0.10275)                         (0.15270) 

 

d)  In the SAS program VARMAX1.sas we, among other things use the system-wide 

goodness-of-fit measures, SBC and AICC, to determine an optimal lag-length of a 

VAR using both the y and x series from the B-J Series M data set.  Fill in the 

following blanks: 

 

Minimum Information 

Criterion Based 

on SBC 

 

Lag            MA 0 

 

AR 0      -1.265529 

AR 1      -1.421625 

AR 2      -1.555735 

AR 3      -3.987073 

AR 4      -4.348406 

AR 5      -4.361527 

(Lag=5 is choice) 
AR 6      -4.309591 

 

Minimum Information 

Criterion Based 

on AICC 

 

Lag             MA 0 

 

AR  0      -1.311953 

AR  1      -1.559855 

AR  2      -1.784187 

AR  3      -4.303901 

AR  4      -4.751469 

AR  5      -4.848346 

AR  6      -4.877308 

AR  7      -4.868746 

AR  8      -4.921157 

(Lag=8 is choice) 
AR  9      -4.838069 

AR 10      -4.788212 

 

 

e) Given the information you report in part d) above, the SBC criterion suggests lag 

length __5___ while the AICC criterion suggests lag length ___8___. 
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f) We wound up choosing the lag length 8 because it appears that this model has 

white noise residuals.  Fill in the following blanks: 

 

 

 

 

Lag Length 5 Model 

 

Portmanteau Test for Cross 

Correlations of Residuals 

Up To 

Lag       DF      Chi-Square    Pr > ChiSq 

 

                                         6           4             25.95             <.0001 

                                         7           8             32.16             <.0001 

                                         8          12            33.82             0.0007 

                                         9          16            37.34             0.0019 

                                        10         20            42.49             0.0024 

                                        11         24            48.06             0.0025 

                                        12         28            48.75             0.0089 

 

Lag Length 8 Model 

 

Portmanteau Test for Cross 

Correlations of Residuals 

Up To 

Lag        DF    Chi-Square    Pr > ChiSq 

 

                                          9            4           11.29            0.0235 

                                         10           8           12.71            0.1222 

                                         11          12          16.25            0.1802 

                                         12          16          17.16            0.3752 

 

Notice in this case all of the probability values associated with the chi-square tests of 

white noise of the residuals are greater than 0.05 (except for the lag 9 statistic) and 

thus we conclude that the lag length 8 VAR has residuals that are white noise and 

thus the lag length 8 VAR is preferable.    
 

    f) We also conducted a Granger Causal test for y1 affecting y2 versus y2 affecting y1.  

Fill in the following blanks using the output from the VARMAX1.sas program.  Briefly 

explain to meaning of this test as it relates to building a VAR for the Series M data set.    

  

Granger-Causality Wald Test 

 

Test        DF    Chi-Square    Pr > ChiSq 

 

                                          1            8          4192.79          <.0001 

                                          2            8             5.16             0.7406 
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Test 1:  Group 1 Variables:  y1 

            Group 2 Variables:  y2 

 

Test 2:  Group 1 Variables:  y2 

       Group 2 Variables:  y1 

 

Answer:  Test 1 is testing if y2 Granger causes y1.  In this case it does since the Chi-

square statistic has a probability value that is less than 0.05.  Test 2 is testing if y1 

Granger causes y2.  In this case it does not since the Chi-square statistic has a 

probability value that is greater than 0.05.   

 

g) Using the VARMAX4.sas and VARMAX5.sas programs fill in the following 

blanks: 

VAR(8) 

 

MAE of ARIMA(1,1,1) model for y = ___0.74658__________ 

MAE for VAR(8) model, y variable = ___0.17717__________ 

 

RVAR(8) 

 

MAE of ARIMA(1,1,1) model for y = ____0.74658_________ 

  MAE for RVAR(8) model, y variable = ____0.17633_________ 

 

Extra Information:  So one can see that, when using the MAE forecasting accuracy 

measure, the VAR(8) did better than the B-J model hence the supplementary variable 

is useful.  Likewise, the RVAR(8) model did better than the B-J model and even 

better than the VAR(8) so not only does the supplementary variable appear to be 

useful but when using it through a restricted VAR it is even better.  This is because, 

according to the Granger causal tests, Y2 is strictly exogenous and the restricted VAR 

appropriately incorporates this information uncovered by the Granger causal tests.   

(Y2 being strictly exogenous means that Y1 does not Granger cause Y1 but, to our 

benefit, Y2 does Granger cause Y1.)  

 

h) In the SAS program M_Horserace.sas a Diebold-Mariano test is conducted on the 

statistical significance of the difference in the forecasting accuracies of the RVAR(8) 

model and the BJ model for y.  Report below the appropriate test statistics and right-

tail p-values for the significant difference in the following forecasting accuracy 

measures using RVAR(8): 

 

MAE: t = __6.57__________ , p = __<0.0001/2_____ (right-tail p-value) 

MSE: t = __4.58__________ , p = __<0.0001/2_____ (right-tail p-value) 

 

Extra Information:  In both the MAE and MSE tests the best ARMA model to use is 

ARMA(0,0).  Using this model we do a one-side test of the significance of the mean 

(MU).  So we can see from these two Diebold-Mariano tests that for both the MAE 

and MSE forecasting accuracy measures, the RVAR(8) provides statistically 

significant improvement when forecasting the target variable.  We are pretty 
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confident that our supplementary variable is helpful to us in forecasting the target 

variable.    


