EXERCISE 7 KEY

Purpose: To learn how to use the **Augmented Dickey-Fuller Unit Root test** to determine if a time series needs to be differenced in order to make it stationary or if it can be modeled as is. We will be looking at two time series: First, the lead production time series and, second, the Dow Jones index. Besides the lectures that I have given on this topic you can consult the files **ADF Lecture Notes.pdf** and **ADF Notes.pdf** that you can find in the "notes" subdirectory for this course. **This homework is due Thursday, October 20.**

Go to the course website and download the EVIEWS program **leadprod.wf1**. In the below discussion we are using the notation presented in **ADF Notes.pdf**. On Apps.smu you will find the EVIEWS (Econometric Views) program. Use it as required by this exercise.

(i) Consider the correct Augmented Dickey-Fuller test of the following hypotheses:

$$H_0: \theta = 0$$
 versus $H_1: \theta < 0$

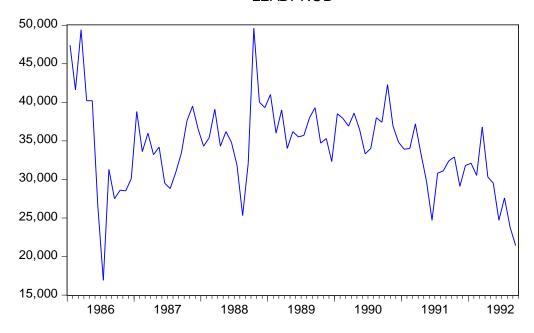
In lay terms what is the meaning of H_0 ? H_1 ?

ANSWER:

 \boldsymbol{H}_0 : Data is nonstationary and needs to be differenced to make it stationary

 H_1 : Data is stationary as is. Doesn't need to be differenced to make it stationary.

(ii) Using EVIEWS and the correct Dickey-Fuller case for the Lead Production data report the following information:


Case = Zero Mean / Single Mean / Trend (circle a choice)
Lag Length** =0 (i.e. no augmenting terms used)
Dickey-Fuller t-statistic (tau) = -4.483380
Probability Value of DF t-statistic =0.0005
This test result indicates that lead production (is/is not) stationary and
(does/ does not) need to be differenced.

^{*} Let EVIEWS use automatic lag length selection by means of the Schwartz information criterion to choose the appropriate lag length for

the augmenting terms in the Dickey-Fuller test.

This is obviously the "single mean" case as the data are flat and having a non-zero level:

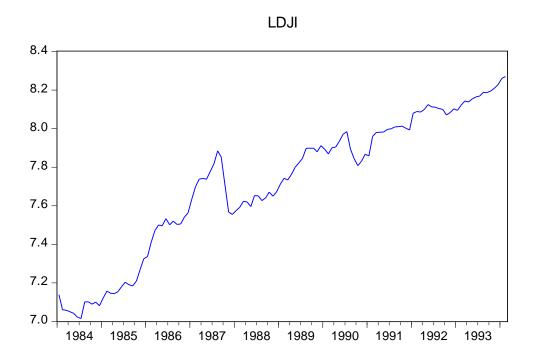
LEADPROD

Go to the course website and download the EVIEWS program **Dow Jones.wf1**. Then use this EVIEWS program to complete part (iii) of this exercise.

(iii) Using EVIEWS and the correct Dickey-Fuller case for the **log of Dow Jones Index** (*), report the following information:

Case = Zero Mean / Single Mean / **Trend** (circle a choice)

Lag Length** = __1_(i.e. one augmenting term is used)_____


Dickey-Fuller t-statistic (tau) = ___-2.850085____

Probability Value of DF t-statistic = __0.1827___

This test result indicates that Dow Jones Index (is/is not) trend stationary and (does/does not) need to be differenced before it is modeled by Box-Jenkins methods.

- * The SAS %logtest macro indicates that it is preferable to model **the log of the Dow Jones index** as compared to just the index itself. So we would build a Box-Jenkins model of the monthly percentage change in the Dow-Jones index should we find the need to difference the data to make it stationary.
- **Let EVIEWS use automatic lag length selection by means of the Schwartz information criterion to choose the appropriate lag length for the augmenting terms in the Dickey-Fuller test.

This is obviously the "trend" case as the data are trending upward. It is a matter of how quickly the data is turning around a superimposed trend line through the data.

