
A Beginner’s Introduction 

To 

Box-Jenkins Models 

 

I. Introduction 

In their seminal work, Time Series Analysis: Forecasting and Control (1970, Holden Day), Professors Box 
and Jenkins introduced a set of time series models, later called Box-Jenkins models, that revolutionized 
the analysis of time series data - observations on a variable observed over time at regular time intervals.  
An example would be real Gross Domestic Product produced by the Commerce Department of the U.S. 
Government that is published quarterly.  See below for a graph of the real Gross Domestic Product 
observed from 1947Q1 to 2012Q3.   

  

In a SAS program titled “Real GDP.sas” I have estimated a Box-Jenkins model for the quarterly, 
annualized growth rates of this data for the span of time 1980Q1 to 2012Q3.  Below you will find the 



growth rate of Real GDP plotted for this period.  The growth rate at time t is calculated as 𝑦𝑦𝑡𝑡 =
(log(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡) − log(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑡𝑡−1)) ∙ 400.  This is the quarterly annualized growth rate in percentage terms.   

 

 

 

Following the traditional approach of Box-Jenkins modeling, a very good model for this data is as 
follows: 

  𝑦𝑦𝑡𝑡 = 1.48 + 0.42𝑦𝑦𝑡𝑡−1 +  𝑎𝑎�𝑡𝑡       (1) 

Equation (1) is obtained by using the growth data and applying least squares to the general  
Autoregressive Model of order one model, denoted AR(1), 

  𝑦𝑦𝑡𝑡 =  ∅0 +  ∅1𝑦𝑦𝑡𝑡−1 +  𝑎𝑎𝑡𝑡 .       (2) 

The quarterly per annum growth rate observed at time t is represented by 𝑦𝑦𝑡𝑡 while last period’s growth 
rate is denoted by 𝑦𝑦𝑡𝑡−1.  Therefore, the least squares estimate of ∅0, denoted ∅�0, is 1.48.  This is the so-
called constant term of the model.  The least squares estimate of the autoregressive coefficient ∅1, 
denoted ∅�1, is 0.42.  The residuals of this model are represented by 𝑎𝑎�𝑡𝑡 and represent the lack of perfect 



fit of the model to the 𝑦𝑦𝑡𝑡 observations.  The estimated mean of this data is 1.48/(1 – 0.42) = 2.56% 
quarterly per annum growth rate.  If one were standing at the time 2012Q3 and wanted to forecast 4 
future growth rates using the Box-Jenkins approach and model (1) you would get  

Forecasts for variable grgdp 

Obs Forecast Std Error 95% Confidence Limits 

132 2.7712 2.7720 -2.6618 8.2041 

133 2.6495 3.0100 -3.2500 8.5489 

134 2.5979 3.0506 -3.3812 8.5771 

135 2.5762 3.0579 -3.4172 8.5695 
 

The four-step-ahead forecasts are 2.77%, 2.64%, 2.59%, and 2.57%. 2.77% is the one-step-ahead (one 
quarter ahead) forecast while 2.57% is the four-step-ahead (four quarters ahead) forecast.  Notice the 
pretty wide 95% confidence intervals.  Future growth rates could either be positive or negative with the 
tendency being on the positive growth rate side and the best-guess growth rates being the numbers 
(point forecasts) listed above.  The last available growth rate we had was that of 2012Q3, namely, 
3.0587%.  Therefore, using Box-Jenkins methods the 4 forecasts above were generated by the formula 

  𝑦𝑦�𝑡𝑡+ℎ = 2.56 + (3.0587 − 2.56)(0.42)ℎ       (2) 

where h denotes the forecast horizon and h = 1, 2, 3, and 4 in the current case.  More generally, the 
forecasting equation for the AR(1) model is  

  𝑦𝑦�𝑡𝑡+ℎ = 𝜇̂𝜇 + (𝑦𝑦𝑡𝑡 − 𝜇̂𝜇)(∅�1)ℎ       (3) 

where 𝜇̂𝜇 denotes the estimated mean of the 𝑦𝑦𝑡𝑡 data. 

Notice that these forecasts revert to the mean (2.56) over time.  This reversion to the mean is a hallmark 
characteristic of what we will eventually denote as a stationary Box-Jenkins model. 

The 95% prediction confidence intervals above are calculated as 

   𝑦𝑦�𝑡𝑡+ℎ ± 1.96𝑠𝑠𝑠𝑠(𝑦𝑦�𝑡𝑡+ℎ)         (4) 

where  

  𝑠𝑠𝑠𝑠(𝑦𝑦�𝑡𝑡+ℎ) =  �𝜎𝜎�𝑎𝑎2(1 +  ∅�12 + ∅�14 + ⋯+  ∅�1
2(ℎ−1)) .    (5) 

From our computer printout we have as the estimate of the sample variance of the errors, 𝜎𝜎�𝑎𝑎2 = 7.68 and 
the autoregressive coefficient, ∅�1 = 0.42.  Therefore, as the above SAS Proc Arima output indicates 
𝑠𝑠𝑠𝑠(𝑦𝑦�𝑡𝑡+1) = 2.7720, 𝑠𝑠𝑠𝑠(𝑦𝑦�𝑡𝑡+2) = 3.0100, 𝑠𝑠𝑠𝑠(𝑦𝑦�𝑡𝑡+3) = 3.0506, and 𝑠𝑠𝑠𝑠(𝑦𝑦�𝑡𝑡+4) = 3.0579.  As we are dealing 



with a stationary time series here we not that as ℎ →  ∞, 𝑠𝑠𝑠𝑠(𝑦𝑦�𝑡𝑡+ℎ)  approaches the unconditional 

standard deviation of the data, �𝜎𝜎�𝑎𝑎2/(1 − ∅�12) = �7.68/(1 − 0.422) = 3.056.  

Of course, if one wants to convert these forecasts into the “level” of real GDP four periods (quarters) 
ahead we should use the following formulas: 

  𝑙𝑙𝑡𝑡+1 = 13652.51 ∙ (1 +  𝑦𝑦�𝑡𝑡+1/400)0.25  = 13676.09 (2012Q4 forecast) 

  𝑙𝑙𝑡𝑡+2 = 𝑙𝑙𝑡𝑡+1(1 + 𝑦𝑦�𝑡𝑡+2/400)0.25 = 13698.68 (2013Q1 forecast) 

  𝑙𝑙𝑡𝑡+3 = 𝑙𝑙𝑡𝑡+2(1 + 𝑦𝑦�𝑡𝑡+3/400)0.25 = 13720.87 (2013Q2 forecast)  

  𝑙𝑙𝑡𝑡+4 = 𝑙𝑙𝑡𝑡+3(1 + 𝑦𝑦�𝑡𝑡+4/400)0.25 = 13742.91 (2013Q3 forecast) 

Here, 13652.51 is the last available real GDP figure as of 2012Q3. 

So what is the logic of all of this number crunching?  To get a sense of how Box-Jenkins modeling works 

we need to derive some results for the AR(1)model of equation (2).   

II. The AR(1) Box-Jenkins Model 

To get a beginning understanding of Box-Jenkins models let us consider the AR(1) model of equation (2) 
but, for now, we will let ∅0 = 0.  Thus, the model we are considering is 

  𝑦𝑦𝑡𝑡 =  ∅1𝑦𝑦𝑡𝑡−1 + 𝑎𝑎𝑡𝑡 .        (6) 

The error terms of this model, 𝑎𝑎𝑡𝑡, are assumed to have the following “White Noise” properties: 

  𝐸𝐸(𝑎𝑎𝑡𝑡) = 0 for all t   (zero mean assumption)  (6i) 

  𝐸𝐸(𝑎𝑎𝑡𝑡2) =  𝜎𝜎𝑡𝑡2      for all t    (constant variance assumption)  (6ii) 

  𝐸𝐸(𝑎𝑎𝑠𝑠𝑎𝑎𝑡𝑡) = 0 for all s ≠t  (independence assumption)  (6iii) 

    𝑎𝑎𝑡𝑡 is normally distributed for all t (Normality assumption)   (6iv) 

In order for model (6) to have a constant mean, variance, and covariances we require that |∅1| < 1. 

The so-called moving average representation of model (6) is derived by recursive substitution as follows: 

  𝑦𝑦𝑡𝑡 =  ∅1(∅1𝑦𝑦𝑡𝑡−1 + 𝑎𝑎𝑡𝑡−1) +  𝑎𝑎𝑡𝑡 

       =  ∅12𝑦𝑦𝑡𝑡−1 + ∅1𝑎𝑎𝑡𝑡−1 +  𝑎𝑎𝑡𝑡 . 

Substituting s times produces 

  𝑦𝑦𝑡𝑡 =  ∅1𝑠𝑠+1𝑦𝑦𝑡𝑡−(𝑠𝑠+1) + 𝑎𝑎𝑡𝑡 +  ∅1𝑎𝑎𝑡𝑡−1 +  ∅12𝑎𝑎𝑡𝑡−2 +  ⋯+ ∅1𝑠𝑠𝑎𝑎𝑡𝑡−𝑠𝑠 . 



Letting s = t – 1 produces 

  𝑦𝑦𝑡𝑡 =  ∅1𝑡𝑡𝑦𝑦0 +  𝑎𝑎𝑡𝑡 + ∅1𝑎𝑎𝑡𝑡−1 +  ∅12𝑎𝑎𝑡𝑡−2 +  ⋯+  ∅1𝑡𝑡−1𝑎𝑎1    (7) 

where 𝑦𝑦0 denotes the initial value of the time series.  Obviously, as time (t) goes to infinity, the initial 
value, 𝑦𝑦0, has a negligible effect on the series since |∅1| < 1 .  Therefore, without loss of generality, we 
can just set 𝑦𝑦0= 0 and letting t be large we have the basic description of 𝑦𝑦𝑡𝑡 as 

  𝑦𝑦𝑡𝑡 =  𝑎𝑎𝑡𝑡 +  ∅1𝑎𝑎𝑡𝑡−1 + ∅12𝑎𝑎𝑡𝑡−2 +  ⋯      (8) 

Now we are, in turn, going to derive the mean, variance, covariances, and autocorrelations of the AR(1) 
process (6) above.   

The Mean 

Using the linearity of the expectation operator E(.) we have   

  𝐸𝐸(𝑦𝑦𝑡𝑡) =  𝐸𝐸(𝑎𝑎𝑡𝑡 +  ∅1𝑎𝑎𝑡𝑡−1 + ∅12𝑎𝑎𝑡𝑡−2 +  ⋯+  ∅1𝑡𝑡−1𝑎𝑎1) 

              = 𝐸𝐸(𝑎𝑎𝑡𝑡) +  ∅1𝐸𝐸(𝑎𝑎𝑡𝑡−1) +  ∅12𝐸𝐸(𝑎𝑎𝑡𝑡−2) + ⋯+  ∅1𝑡𝑡−1𝐸𝐸(𝑎𝑎1) = 0   (9)  

because of the White Noise assumption (6i).  Therefore, the mean of model (6) is zero. 

The Variance         

 Using the White Noise independence property (6iii) it is straight forward to derive the variance of the 
process (6).  Namely, 

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡) = 𝐸𝐸(𝑦𝑦𝑡𝑡 − 𝐸𝐸(𝑦𝑦𝑡𝑡))2 = 𝐸𝐸(𝑦𝑦𝑡𝑡2) = 𝐸𝐸(𝑎𝑎𝑡𝑡 + ∅1𝑎𝑎𝑡𝑡−1 +  ∅12𝑎𝑎𝑡𝑡−2 +  ⋯ )2 

    = 𝐸𝐸(𝑎𝑎𝑡𝑡2) +  ∅12𝐸𝐸(𝑎𝑎𝑡𝑡−12 ) + ∅14𝐸𝐸(𝑎𝑎𝑡𝑡−22 ) +  ⋯ 

                  =  𝜎𝜎𝑎𝑎2 +  ∅12𝜎𝜎𝑎𝑎2 +  ∅14𝜎𝜎𝑎𝑎2 + ⋯ 

    =  𝜎𝜎𝑎𝑎2( 1 +  ∅12 +  ∅14 +  ⋯ ) 

Then since the expression in the parentheses above represents a geometric progression with radius of 
∅12 < 1, have as the unconditional variance of (6)  

 𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡) = 𝜎𝜎𝑎𝑎2( 1 +  ∅12 +  ∅14 + ⋯ ) =  𝜎𝜎𝑎𝑎2

1− ∅12
   .      (10) 

The Auto-Covariance Function 

Now let us consider the autocovariance between an observation at time t (𝑦𝑦𝑡𝑡) and an observation the 
period before (𝑦𝑦𝑡𝑡−1).  By definition we have the first-order autocorrelation as   

 𝛾𝛾1 = 𝐸𝐸��𝑦𝑦𝑡𝑡 − 𝐸𝐸(𝑦𝑦𝑡𝑡)��𝑦𝑦𝑡𝑡−1 − 𝐸𝐸(𝑦𝑦𝑡𝑡−1)�� = 𝐸𝐸(𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡−1) 



      = 𝐸𝐸[(𝑎𝑎𝑡𝑡 +  ∅1𝑎𝑎𝑡𝑡−1 +  ∅12𝑎𝑎𝑡𝑡−2 + ⋯ )(𝑎𝑎𝑡𝑡−1 +  ∅1𝑎𝑎𝑡𝑡−2 +  ∅12𝑎𝑎𝑡𝑡−3 +  ⋯)] 

      = 𝐸𝐸�∅1𝑎𝑎𝑡𝑡−12 +  ∅13𝑎𝑎𝑡𝑡−22 +  ∅15𝑎𝑎𝑡𝑡−32 + ⋯ � =  ∅1𝐸𝐸(𝑎𝑎𝑡𝑡−12 ) + ∅13𝐸𝐸(𝑎𝑎𝑡𝑡−22 ) +  ∅15𝐸𝐸(𝑎𝑎𝑡𝑡−32 ) +  ⋯   

      =  ∅1𝜎𝜎𝑎𝑎2(1 +  ∅12 +  ∅14 + ⋯ ) =  ∅1𝜎𝜎𝑎𝑎2/(1 − ∅12) .     (11) 

In general the j-th order autocovariance between an observation at time t (𝑦𝑦𝑡𝑡) and an observation j-
periods before (𝑦𝑦𝑡𝑡−𝑗𝑗) is 

 𝛾𝛾𝑗𝑗 = 𝐸𝐸 ��𝑦𝑦𝑡𝑡 − 𝐸𝐸(𝑦𝑦𝑡𝑡)� �𝑦𝑦𝑡𝑡−𝑗𝑗 − 𝐸𝐸(𝑦𝑦𝑡𝑡−1)�� = 𝐸𝐸(𝑦𝑦𝑡𝑡𝑦𝑦𝑡𝑡−𝑗𝑗) 

      = 𝐸𝐸[(𝑎𝑎𝑡𝑡 +  ∅1𝑎𝑎𝑡𝑡−1 +  ∅12𝑎𝑎𝑡𝑡−2 + ⋯ )�𝑎𝑎𝑡𝑡−𝑗𝑗 +  ∅1𝑎𝑎𝑡𝑡−𝑗𝑗−1 + ∅12𝑎𝑎𝑡𝑡−𝑗𝑗−2 +  ⋯ �]    

      ∅1
𝑗𝑗𝜎𝜎𝑎𝑎2(1 +  ∅12 +  ∅14 + ⋯ ) =  ∅1

𝑗𝑗𝜎𝜎𝑎𝑎2/(1 − ∅12) .                   (12) 

The Autocorrelation Function 

The autocorrelation function is just a conversion of the autocovariance function into a measurement of 
association between time series observations that is not dependent on the scale of measurement of the 
time series (units, hundreds, thousands, millions, etc.).   

The autocorrelations between time series observations that are j periods apart is  

 𝜌𝜌𝑗𝑗 =  𝐶𝐶𝐶𝐶𝐶𝐶(𝑦𝑦𝑡𝑡,𝑦𝑦𝑡𝑡−𝑗𝑗)

�𝑣𝑣𝑣𝑣𝑣𝑣(𝑦𝑦𝑡𝑡)𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡−𝑗𝑗)
=  𝛾𝛾𝑗𝑗

𝑉𝑉𝑉𝑉𝑉𝑉(𝑦𝑦𝑡𝑡)
=  ∅1

𝑗𝑗    .     (13) 

Consider, for example, when ∅1 = 0.8 in model (6) the autocorrelation function is 



 

But, consider when ∅1 = −0.8 in model (6).  The autocorrelation function is  
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