
A Brief Tutorial 
 

On  
 

Exponential Smoothing Models 
 
 

Major Observation:  Exponential smoothing models are special cases of Box-Jenkins 
models.  When adopting exponential smoothing models for forecasting you are implicitly 
claiming that the same Box-Jenkins model fits all time series equally well.  In many 
instances, exponential smoothing methods may forecast well, but there may also be many 
instances where building a general Box-Jenkins model for forecasting would do even 
better.  If one only has a few observations to begin with (say 10 or less) then an ad hoc 
choice of the smoothing parameter (α ) (say α  = 0.3) can at least generate forecasts 
whereas having less than 10 observations makes it difficult to use the Box-Jenkins 
method for building an adequate forecasting model.  One has to wait on more 
observations before progressing from the exponential smoothing models to Box-Jenkins 
models.   
 

1. The Single Exponential Smoothing (SES) Model is equivalent to a 
ARIMA(0,1,1) Box-Jenkins  
 
The Single Exponential Smoothing (SES) Model can be written as 
 
 11 )1( −− −+= ttt FAF αα       (1) 
 
where  
 
  = exponentially smoothed forecast for period t tF
 
  = actual value in prior period 1−tA
 
  = exponentially smoothed forecast for period t-1 1−tF
 

 α  = smoothing constant . 
 
 If α  is close to zero, the forecast relies heavily on past observations (i.e. is 

smoothed heavily).  If 1=α  the evidence of past data is ignored completely and 
the forecast is given by the value of the current observation. 
 
But model (1) is equivalent to the ARIMA(0,1,1) model 
 
 11 −−=Δ ttt aaA θ       (2) 
 
where  represents a white noise error term and the correspondence between ta



model (1) and model (2) is 11 θα −= .  Therefore model (1), the single 
exponential smoothing model, is a special case of the ARIMA(0,1,1) Box-Jenkins 
model.  The above point was made by A.C. Harvey in his book Time Series 
Models (1981, Philip Allan Publishers), p. 168.  This brings up the following 
Point.  Why should one attempt to fit all time series using one particular Box- 
Jenkins model?  In model (2) there is no drift term, therefore the single 
exponential smoothing model should not be applied to data with trend.  A naïve 
user of the SES model, however, is not likely to know of this subtle point. 
 
One can use MLE on the ARIMA(0,1,1) model of (2) and obtain an estimate of 
the smoothing parameter α  as , where  is the MLE of the moving 1̂1ˆ θα −= 1̂θ
average order-one parameter 1θ  .   Alternatively, one could do a grid search over 
the interval [0,1] and apply (1) to determine the RMSEs of one-step forecasts for 
different values of α  and choose the α  value that minimizes RMSE.  (This is 
essentially the same as using MLE to estimate the ARIMA(0,1,1) model (2)). 
 

2. The Seasonal Single Exponential Smoothing (SSES) Model is equivalent to a 
ARIMA(0,0,0)x(0,1,1)s Multiplicative Seasonal Box-Jenkins model. 

 
The seasonal single exponential smoothing (SSES) model is of the form 
 
 ststt FAF −− −+= )1( αα  .     (3) 
 
This model is equivalent to the ARIMA(0,0,0)x(0,1,1) Multiplicative Seasonal 
Box-Jenkins Model 
 
  .      (4) sttts aaA −Θ−=Δ 1

 
We have the correspondence 11 Θ−=α .  Therefore, one can estimate α  as 
 , where  is the MLE of 1

ˆ1ˆ Θ−=α 1Θ̂ 1Θ  in model (4) above. 
 
Again, the question arises as to why one would restrict the search for a good time 
series model to a special case of the Multiplicative Seasonal Box-Jenkins model. 
Are all seasonal time series equally well characterized by the same special case 
Box-Jenkins model?  Notice (4) does not allow for trend in the data after taking 
the seasonal span difference which certainly doesn’t apply to all time series data. 
In many time series the more appropriate differencing of seasonal time series is 

sΔΔ1  .  One can now appreciate the inflexibility built into the SSES model.   


