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I. Introduction 

 

 The Deterministic Trend / Deterministic Season (DTDS) model is one of the first 

time series models proposed to handle trends and seasonality in economic and business 

data.  It popularity depended on the relative ease of estimating such a model by the method 

of ordinary least squares and the interpretability of the model.  Interestingly, this model is 

a special case of the Unobservable Components model (UCM) with fixed level ( 02  ) 

and fixed slope ( 02  ) resulting in the deterministic trend specification tt 00   , 

fixed dummy seasonals ( 02  ), assuming an autoregressive factor, ttt rr   1 , and 

no irregular component ( 02  ).  The fact that the UCM encompasses the current simple 

model we are going to entertain just goes to highlight how far time series modeling has 

come over the last several decades.  Actually, as you will see below, we generalize the 

autoregressive term to be an AR(r) process as compared to the AR(1) term assumed in the 

UCM.  But the point is that, essentially, the current model is a special case of the UCM. 

 

II. Notation for the DTDS Model 

 

 Assume the times series ty  is observed monthly.  At first blush, one might think 

naively of writing the DTDS model as  

  tttttt DDDDty   12,12332211    (1) 



 2 

  trtrttt a   2211     (2) 

where ty  is the target variable, t  = 1, 2, ..., T , tjD  is a seasonal dummy variable that takes 

the value of one if the t-th observation is observed in the j-th month and 0 otherwise, and 

the errors t  follow an AR(r) process and the errors ta  are white noise. 

 However, a closer look indicates a redundancy in the sample design implied by the 

parametrization (1) and (2).  In fact, the full set of seasonal dummy variables 

12,21 ,,, ttt DDD   is pefectly collinear with the intercept  .  To avoid the so-called 

Dummy Variable trap, we may take one of three tacts: 

 We can drop one of seasonal dummies, say the January seasonal 1tD . 

  This implies that the intercept, , is the January intercept while the coefficients of the 

other months are “increments” to the January intercept.  Let us call this the “relative to 

January” parametrization.   That is, the February intercept is )( 2  , the March 

intercept is )( 3  , etc.  Of course, the dropping of the January dummy is arbitrary and 

one could just as easily drop any other month.  For now we will stick with dropping the 

January dummy and stick with the label chosen for the parametrization.   

 We could drop the intercept in our model and then the seasonal dummy 

coefficients would represent the respective intercepts of the months.  This, of course, 

requires that the regression be run “through the origin” and in this case some of the 

classical measures of goodness-of-fit like the coefficient of determination and the overall 

F-statistic are no longer applicable although traditional hypothesis testing can still be done 

in this context.  One might call this the “each season has its own intercept” 

parametrization. 

 We can keep all of the coefficients in (1) above but impose a restriction 

on the seasonal dummy coefficients that avoids the Dummy Variable trap.  One restriction 

that is often imposed is setting the sum of the seasonal coefficients equal to zero.  The 

advantage of this parametrization is that the signs of the coefficients reveal the “stronger” 

months (those with positive coefficients) versus the “weaker” months (those with negative 

coefficients).  One might call this the “zero sum constraint” parametrization. 
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 As it turns out, all of these parametrizations are equivalent to each other in the 

sense that the coefficients estimates one might get from using one parametrization can 

easily be translated into the coefficients estimates produced by either of the other two 

parametrizations.  Since the relative to January parametrization is easier to implement in 

SAS, especially when using Proc Autoreg to estimate the autocorrelation structure (2), we 

will pursue this parametrization exclusively in the following discussion and write it as 

  

  ttttt DDDty   12,123322     (3) 

             trtrttt a   2211  .    (4)  

  

 In terms of conventional additive time series decomposition, the trend is 

represented by the t   part of the model (  is the ty  intercept and   is the slope of 

the deterministic trend line, t  ), the part 12,123322 ttt DDD     is seasonal 

part of the model, and t  contains the irregular part, ta , plus the cyclical part, 

rtrtt    2211 , of the model. 

 

III. Examining Some of the Details of the DTDS model 

 

 Let us look more closely at the DTDS model (3) and (4).  In this form the model is 

a linear trend model as compared to a quadratic trend model. If 0>  and 0> , then, 

generally speaking, the ty  data is positive at time 0=t , and has a positive slope to it. Of 

course we could have 0<  which would imply that the data is declining. In actuality, if 

the data has “curvature” in it we could, instead, model the trend as 
2tt   . Of course, 

we can make the choice between the linear and quadratic trend forms of the data by closely 

inspecting the data and, as we will later see, using tests of hypotheses concerning  .  For 

now, we will assure that the trend in the data we are analyzing is linear, hence we assume 

trend t   for now. 
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What are the meanings of the seasonal dummy variables? Given the specification (1) 

we see that January's trend line is given by t  , February's trend line is given by 

t  )( 2 , ..., and December's trend line is given by t  )( 12 . Thus, the “base”' 

trend line is January's trend line, while the j , j =2, 3, ...,12 denote the “incremental” 

intercept coefficients that distinguishes the other months' trend lines (in particular the 

intercepts) from the trend line for the January months of each year. One can now see why 

this parametrization of the model is called the ``Relative to January'' parametrization. 

Therefore, in identifying the seasonal effects (both relative and absolute) we can to 

compare the magnitudes of  (the January intercept), 2  (the February intercept), etc..  

If the j  coefficient is positive, then the thj   month is ``stronger'' than January, 

otherwise it is “weaker” than January. Strength of seasonal effect then is relative to January. 

Obviously, if all of the sj '  is positive then, by default, January's seasonal effect is the 

weakest. 

 The “average” seasonal effect is, of course, 

 



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 Then the “strong months” in terms of seasonal effect are those whose trend intercept 

 (for January) and j  (for the other months) are greater than   while the “weak 

months” have   or j   intercepts that are less than  .  If one wants to “standardize” 

the seasonal effects, one could do so by forming the coefficients 
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These coefficients are such that their signs helps us distinguish between the positive 

(seasonally strong) months and the negative (seasonally weak) months.  Also their 

absolute maginitudes can be used for comparing the seasonal effects across months. 

 For example, consider the standardized seasonal coefficients (6) for the Plano Tax 

Revenue data as produced by the program Plano_Test_Seasonality.sas: 
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Table 1 

  Standardized seasonal effects by month.  They sum to zero. 

Strong months are positive and weak months are negative. 

Their magnitudes can be compared. 

 

                  sum                d1a           d2a           d3a            d4a             d5a          d6a 

 

            -2.7756E-16    -0.41046    1.43772    -0.44900    -0.56675    0.60094    -0.30948 

 

                  d7a         d8a            d9a           d10a         d11a           d12a 

 

             -0.39709    0.60483    -0.33027    -0.37695    0.65101    -0.45451 

 

The variable “sum” represents the sum of the standardized coefficients which is equal to 

zero up to minute computing rounding error.  Obviously, from a seasonal effect standpoint, 

the stronger months are 2, 5, 8, and 11 (February, May, August, and November) while the 

other months are weaker.  The strongest month is February while the weakest month is 

April.   

 But what about the cycle part of this model? To understand how the equation (2) is 

capturing the cyclical part of the data. Consider the AR(1) version of (4), 

   ttt a1=          (4’) 

where we require, 1<  in order for the t  process to be stationary (i.e. have constant 

mean, variance and covariance with respect to time). (We simply use   rather than 1  to 

simplify the notation somewhat.)  In the Appendix we show that 

  (i) 0)( tE   

  (ii) 
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  (iv) j

jttCorr   ),(  

For example, in the special AR(1) model ttt a10.8=   the autocorrelation function of 
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the errors is represented graphically by the following graph. 
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Given this autocorrelation function, we can see that adjacent errors t , 1t  have an 

autocorrelation coefficient of 0.8 but that errors t  and jt  that are j-periods apart have a 

smaller correlation of j0.8 . The further the errors t  are apart, the less the correlation is 

between them. 

But how does such an error process model cyclicity in economic and business data? 

Well, apart form the trend and seasonal effect, if the data )( ty  is above the trend plus 

seasonal effect (i.e. 0>t ) then the subsequent ty  is likely to be above the trend plus 

seasonal effect in the next period (i.e. 0>1t ). Similarly if 0<t  then there is a 

substantial possibility of 0<1t . That is, given above average behavior of ty  in time t , 

there is likely to be above average behavior of 1ty  in time 1t  and also quite likely so for 

several subsequent periods. Similarly, given below average behavior of ty  in time t , there 

likely to be below average behavior of 1ty  in time 1t  and for several periods thereafter. 

But this is typical of the cycles we finds in macroeconomic and business data associated 

with the overall business cycle of an economy. 
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IV. Estimation and Prediction in the DTDS Model 

 

Suppose that we want to use model (3)-(4) for forecasting purposes. First, we have to 

estimate the coefficients of the model.  A first approximation can be obtained by the 

so-called method of Ordinary Least Squares to get estimates of the parameters  ,  , 

2 , ..., 12  which we label ̂ , ̂ , 2̂ , ..., 12̂ . The Ordinary Least Squares estimates are 

then derived by minimizing the sum of squared errors of the model, namely,   

  ,)ˆˆˆˆ(= 2

12,1222

1

ttt

T

t

DDtyS  


     (8) 

The Ordinary Least Squares errors of the model are 

  ).ˆˆˆˆ(=ˆ
12,1222 tttt DDty                                                          (9) 

In a similar manner we can consider the “fitted” AR(r) error model 

  ,ˆˆˆ=ˆ
2211 trtrttt a                   (10) 

and use Ordinary Least Squares squares to obtain estimates of the autoregressive 

parameters 1 , 2 , ..., r  in (10), say, 1̂ , 2̂ , ..., r̂ . Finally, with the Ordinary Least 

Squares estimates of ̂ , ̂ , 2̂ , ..., 12̂ , 1̂ , ..., and r̂ , we can forecast 1ty  (a 

one-step-ahead forecast) using the minimum mean square error formula  

  11,12121,221
ˆˆˆ1)(ˆˆ=ˆ
  tttt DDty                 (11) 

                           where     11211
ˆˆˆ=ˆ

  rtrttt                (12) 

 is the forecasted error for time period 1t .  The other forecasts ,ˆ,ˆ
32  tt yy  can be 

obtained by using (11) and (12) recursively.   

In terms of software implementation of this model, in SAS we can use PROC 

FORECAST to produce the forecasts in this way.  However, a more efficient way to 

estimate the present model is to use Generalized Least Squares to estimate the regressive 

parameters  ,  , 2 , ..., 12  along with the error parameters 1 , 2 , ..., r . PROC 

AUTOREG in SAS can be used to accomplish this task.  The term Generalized Least 

Squares derives its name from the fact that the variables of original model (3) are 
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transformed in such a way so that the resulting errors of the transformed equation statisfy 

the assumptions of Ordinary Least Squares, namely that the errors of the transformed 

model are independently and identically distributed with zero mean and constant variance.  

For example, if r = 1 and the errors t of the DTDS model follow an AR(1) process, a 

popular Generalized Least Squares transformation of the data is the so-called 

Cochrane-Orcutt transformation.  This transformation calls for transforming the 

original model (3) into the Generalized Least Squares equation 

  
tttt aDDty  *

12,12

*

22

***     for .,,3,2 Tt         (13) 

where  *
 , tt )1(*  , ,2,12

*

2  ttt DDD  , *

12,1

*

12,  tt DD  .  Note 

that the derived error term ta is now white noise as required by Ordinary Least Squares.  

See the appendix for this derivation.  To implement (Feasible) Generalized Least Squares 

one first estimates   by Ordinary Least Squares producing  

   












T

t

t
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t
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2

2

1

ˆ

ˆˆ

ˆ





  .                                                  (14) 

 and then applying Ordinary Least Squares to the transformed equation (13) with ̂  

substituted in for  .  Feasible Generalized Least Squares can be extended in a similar 

fashion to the higher order AR(r) error process (4) and SAS Proc Autoreg provides the 

means for doing so. 

 

V. Prediction in the DTDS Model   

 

In general the predictions produced by the the deterministic trend/ deterministic 

seasonal model (3)-(4) revert to the estimated trend line plus seasonal effects as the 

forecast horizon, h, approaches infinity ( h ). This result is most easily shown for the 

case where the model has AR(1) errors. In this case, the h-ahead forecast of y is  

                 hthththt DDhty    ˆˆˆ)(ˆˆ=ˆ
,1212,22                               (14) 
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where    t

h

ht  ˆˆ=ˆ
 .  Since 1|<ˆ|  , we have 0ˆ ht  as h ,and the h-step ahead 

forecast of the model approaches the trend plus seasonal part 

,1212,22
ˆˆ)(ˆˆ

htht DDht     . That is, although the deterministic trend and 

deterministic seasonal effects remain in the forecast profile, as the forecast horizon goes to 

infinity, the cyclical part eventually vanishes in its effect. That makes sense in the respect 

that the trend and seasonal effects are assumed to be deterministic (i.e. fixed through time) 

while the cycle is modeled as being stochastic and mean reverting. 

The standard error of the h-step-ahead forecast hty 
ˆ , denoted by )ˆ( htyse  , is the 

estimated of the square root of  

  2

,1212,22

2 ))((=)( t

h

hthththt DDhtyEE     .   (15) 

In the Appendix we show that  

 )1(
1

)( 2

2

2

2 ha

htE 



 




 .            (16) 

This variance can then be consistently estimated by  

 )ˆ1(
)ˆ1(

ˆ
)(ˆ 2

2

2

ha

htraV 



 




            (17) 

where ̂  can be obtained from (14) and  

 



2

22 )1/(ˆˆ
t

ta Ta              (18) 

with being the Ordinary Least Squares residuals obtained from (13). 

 It follows that the standard error of the h-step-ahead forecast of hty   is 

 )ˆ1(
)ˆ1(

ˆ
)(ˆ)ˆ( 2

2

2
ha

htht raVyse 



 


  .          (19) 

Notice that this standard error approaches the following limit as h   

  
2

2

ˆ1

ˆ
=)ˆ(








a

tyse               (20) 

which, in turn, approaches the standard deviation of t , namely 
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 )/(1=)( 22  atsd                 (21) 

as the sample size of the time series goes to infinity.  

 That the Deterministic Trend / Deterministic Seasonal model's representation of the 

uncertainty associated with future forecast errors approaches a finite limit )/(1 22  a  

as the horizon of the forecast goes to infinity is seen by many forecasters as a major 

limitation of the model. Intuitively, this result arises from the fact that the DTDS model is a 

deterministic model and mean reverting in nature.  In contrast, we will see that in the 

Box-Jenkins models (as well as the UC and exponential smoothing models) the trend in the 

data is treated as being stochastic and thus the standard errors of the Box-Jenkins forecasts 

approach infinity (i.e. are unbounded) as the forecast horizon approaches infinity ( h ).  

As a consequence, many forecasters believe that in practical forecasting problems in 

business and economics the confidence intervals produced by the DTDS model invariable 

understate the forecast uncertainty actually presented by the data.  Of course, one can 

actually observe the out-of-sample prediction coverage of the competing forecast 

confidence intervals and can judge for oneself which of the competing forecast confidence 

intervals has the more accurate coverage rate.   

 Putting these disagreements aside, the )(1  % confidence interval for a 

h-step-ahead forecast produced by the Deterministic Trend/ Seasonal model is expressed 

as  

     1=))ˆ(ˆ<<)ˆ(ˆ( /2/2 ZyseyyZyseyPr hththththt                       (22) 

where 1  is the chosen level of confidence (usually  =0.01, 0.05, or 0.10) and and /2Z  

is that value of the standard normal cumulative distribution such that /2=)( /2 ZZPr  . 

For example, when  =0.05 and we are interested in constructing a 95% prediction 

confidence interval for hty   we have 025.Z =1.96 and the 95% prediction confidence 

interval for an h-step-ahead forecast of hty   is  

  )1.96]ˆ(ˆ)1.96,ˆ(ˆ[ hthththt yseyysey    .                                            (23) 

 Thus, hty 
ˆ  is the point forecast and the (23) is the prediction interval forecast. 
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Using the SAS program  Plano_Forecast.sas we generate 13 forecasts for December 

2005 through December 2006 following the recursive use of (14) and calculating 95% 

prediction confidence intervals based on a formula similar to (19).  (The forecasts were 

generated using an AR(1,3) model instead of the simple AR(1) model we used to explain 

the logic of standard errors of forecasts.) 

   

Forecasts of Plano Sales Tax Revenues for December 2005 through December 2006 

Produced by Deterministic Trend / Deterministic Season model with AR(1,3) errors 

p_ar3 = point forecasts, l_ar3 = lower 95% cl, u_ar3 = upper 95% cl  

 
 

Obs p_ar3 l_ar3 u_ar3 t 

1 3984155.31 3455246.73 4513063.88 191 

2 4044477.15 3509928.84 4579025.47 192 

3 6279377.88 5743912.03 6814843.73 193 

4 4100836.29 3496954.56 4704718.03 194 

5 3968818.35 3357807.14 4579829.57 195 

6 5383075.20 4771181.76 5994968.65 196 

7 4343554.86 3706266.46 4980843.27 197 

8 4245753.49 3602417.77 4889089.21 198 

9 5437241.49 4792752.77 6081730.21 199 

10 4394418.44 3739547.47 5049289.41 200 

11 4346567.01 3687381.60 5005752.41 201 

12 5544408.02 4883911.17 6204904.88 202 

13 4322689.65 3655481.06 4989898.23 203 
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VI. The Choice of the Order r in the Autoregressive Part of the DTDS Model 

 

 In Proc Autoreg in SAS one has the option of specifying a maximum order of of the 

autoregression, say, m axr , and then letting the program sequentially eliminate all of the 

autoregressive terms that are not significant at a prespecified level.  equenall 

Consider the least square estimate of the maxr -order autoregression:  

  
t

max
rtrtt âˆˆ=ˆ

11       

 Then the program sequentally test the following hypotheses, dropping those 

coefficients that are not statistically significant but retaining those that are. 

  

  0:0=:

0:0=:

1
1,2

1
0,2

1,10,1





 max
r

max
r

max
r

max
r

HvsH

HvsH





 etc.         (24) 

If all autoregressive coefficients are found to be statistically insignificant, then Proc 

Autoreg simply reports the Ordinary Least Squares estimates and the associated test 

statistics.  

 

VII. Tests for the Presence of Trend and Seasonality in the DTDS Model 

 

The DTDS offers a very convenient framework of testing for the presence or absence 

of trend or seasonality or both in time series data that approximate mean reverting behavior.  

(Even if the data is not mean reverting in behavior but instead has a stochastic trend, the 

tests to be discussed could nevertheless be useful.) 

To allow for the greatest generality let us consider the following DTDS model where 

we have added a quadratic term to the time trend part of the model to allow for data that 

might have some curvature in its trend.  Consider 

  ttttt DDDtty   12,123322

2            (3A) 

and 
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  trtrttt a   2211    .             (4) 

 

A. Testing for the Presence or Absence of Seasonality 

 

 If we want to test for the presence or absence of seasonality in our data then we are 

interested in the hypotheses 

  0: 12320   H  

versus                    (25) 

  :1H  At least one of the s' is not equal to zero. 

The null hypothesis states that the slopes of the trends of the non-January months all equal 

the slope of the trend for January.  As a result, all of the trends of the months exactly 

coincide and thus there is no seasonal variation in the data.  The alternative hypothesis 

signifies the presence of seasonality in the data since one or more of the slopes of the trends 

of the non-January months do not coincide with the January trend. 

The appropriate F-statistic to test this hypothesis is derived from the Generalized Least 

equation (13) or the AR(r) generalization of it.  Let uSSR be the sum of squared residuals 

that one obtains from the Generalized Least Squares equation and RSSR  be the sum of 

squared residuals that one obtains from the restricted Generalized Least Squares equation 

where the restrictions 01232     have been imposed in the estimation process.   

The appropriate F-statistic is of the form 

  
)14/(

11/)(






rTSSR

SSRSSR
F

u

UR                           (26) 

which, under the assumed truth of the null hypothesis, 0H , has an F-distribution of 11 

numerator degrees of freedom and (T-r-14) denominator degrees of freedom in repeated 

samples.  The numerator degrees of freedom corresponds to the number of restrictions 

being imposed by the null hypothesis while the denominator degrees of freedom 

corresponds to the number of observations minus the number of parameters in the 

unrestricted (full) model.  There are 14 coefficients to be estimated in (3A) and r 
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coefficients to be equation (4).  Of course, if the autoregression (4) is simplified somewhat 

by backward section as detailed in Section VI above then r in (26) becomes the maximum 

order that is specificed for the autoregressive coefficients in the model.   

 The intuition behind (26) is that, if seasonality is not present in the data (i.e. 0H is 

true), the fit offered by the restricted model will be almost as good as the fit offered by the 

unrestricted (full) model and although RSSR  must be greater than equal to USSR  by 

necessity, it will not be too much greater and, as a result, the F-statistic will be small 

implying a p-value (Pr( observedFF  ) that is greater than the chosen size of the test (usually 

0.01, 0.05, or 0.10).  In contrast, if seasonality is present in the data then the restricted 

model will not provide a very good fit of the data and RSSR  will substantially exceed 

USSR .  Then the F-statistic (26) will be large and will imply a p-value less than the chosen 

size of the test.  In summary, a F-statistic derived from (26) that has a small value and a 

large p-value supports the supposition of no seasonality in the data while a large F-value 

and a small p-value suppoet the supposition of seasonality in the data.   

 As an example of this test, consider again the Plano Sales Tax Revenue data.  The 

SAS program Plano_Test_Seasonality.sas provides the following results concerning the 

test statistic (26) : 

 

Test 1 

Source DF Mean Square F Value Pr > F 

Numerator 11 3.4355621E12 68.75 <.0001 

Denominator 175 49972763534   

 

As expected, the numerator degrees of freedom equals 11.  The denominator degrees 

of freedom is 175 = 190 observations – 11 seasonal dummy coefficients – the maximal 

order of the autoregression on the errors, 4.  The numerator mean square error represents 

the calculated value for the numerator in (26) while the denominator mean square error 

represents the calculated value for the denominator in (26).  In the Generalized Least 
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Squares estimation process it turned out that the quadratic term was not needed (t = -1.59 

with two-side p-value = 0.1138) while the OLS residuals indicated the need to use 

Generalized Least squares for conducting statistical inference tests.  See the below 

Durbin-Watson table where the DW statistics of orders 1 – 4 are all highly significant. 

   

Durbin-Watson Statistics 

Order DW Pr < DW Pr > DW 

1 1.3805 <.0001 1.0000 

2 1.5470 0.0013 0.9987 

3 0.6783 <.0001 1.0000 

4 1.4171 <.0001 0.9999 

Note: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is 

the p-value for testing negative autocorrelation. 

  

As it turns out Proc Autoreg retained the first and third order autoregressive 

coefficients in (4) as revealed in the following Proc Autoreg tables:   

 

Backward Elimination of Autoregressive Terms 

Lag Estimate t Value Pr > |t| 

2 0.023174 0.38 0.7075 

4 0.030767 0.41 0.6852 

 

 

Estimates of Autoregressive Parameters 

Lag Coefficient Standard Error t Value 

1 -0.168865 0.058024 -2.91 

3 -0.604465 0.058024 -10.42 

 

In addition, the fitted model appears to have at least near white noise residuals as 

indicated by the following Durbin-Watson table for the Generalized Least Squares 

residuals and the corresponding autocorrelation function (ACF) of the same residuals. 
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Durbin-Watson Statistics 

Order DW Pr < DW Pr > DW 

1 1.8819 0.2098 0.7902 

2 2.2356 0.9491 0.0509 

3 2.2310 0.9548 0.0452 

4 1.8891 0.2944 0.7056 

Note: Pr<DW is the p-value for testing positive autocorrelation, and Pr>DW is 

the p-value for testing negative autocorrelation. 

 

B. Testing for Combinations of Trend and Seasonality  

 

 Other tests suggest themselves as well in the DTDS model.  Consider the 

possibility of testing for no trend in the data but in the presence of seasonality.  The 

null and alternative hypotheses for this test are 

  0:0  H  

versus                (27) 

  :1H  Either 0 or 0  or both. 

In this case the appropriate F-statistic is 

  
)14/(

2/)(






rTSSR

SSRSSR
F

u

UR            (28) 

which under the assumed truth of the null hypothesis is distributed in repeated samples as 

an F-distribution with two numerator degrees of freedom and the same denominator 

degrees of freedom implied by the unrestricted model (3A) and (4). 

 For testing that the data is absent both trend and seasonality we have the 

following null and alternative hypotheses: 

   

  0: 1220   H  

versus                    (29) 

  :1H  At least one of the above coefficients is not equal to zero. 
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In this case the appropriate F-statistic is  

  
)14/(

13/)(






rTSSR

SSRSSR
F

u

UR   .               (30) 

This assumes of course that we have both the linear and quadratic terms in the unrestricted 

model.  This test is equivalent to the F-test for the overall significance of the DTDS 

regression and is available in the standard ANOVA table that most statistical regression 

packages produce (including SAS).   

 

C.  Some Data Sets Demonstrating the Various Types of Tests 

 

 Consider the following Monte Carlo data sets generated and tested by the SAS 

program Comprehensive Trend_Seasonal Test.sas all by the method of Generalized Least 

Squares.      

Data with No Trend or Seasonal Effects 

Figure 1 
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Data with No Trend but Seasonal Effects 

Figure 2 
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Data with Trend but No Seasonal Effects 

Figure 3 
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Data with Trend and Seasonal Effects 

Figure 4 
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For Figure 1 the following test results are produced by the SAS program Comprehensive 

Trend_Seasonal Test.sas: 

 

Test Trend 

Source DF Mean Square F Value Pr > F 

Numerator 2 0.338063 0.35 0.7080 

Denominator 105 0.975887   

 

 

Test Season 

Source DF Mean Square F Value Pr > F 

Numerator 11 0.541156 0.55 0.8611 

Denominator 105 0.975887     
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Test Trend_Season 

Source DF Mean Square F Value Pr > F 

Numerator 13 0.517788 0.53 0.9009 

Denominator 105 0.975887     

 
 

You can see that none of these tests are statistically significant since all of the p-values of 

the tests are greater than, say, 0.05 thus implying the absence of both trend and seasonal 

effects as roughly indicated by a visual inspection of the data. 

For Figure 2 the test results are: 

 

Test Trend 

Source DF Mean Square F Value Pr > F 

Numerator 2 13.902751 0.17 0.8470 

Denominator 105 83.577582     

 

 

Test Season 

Source DF Mean Square F Value Pr > F 

Numerator 11 19227 230.05 <.0001 

Denominator 105 83.577582     
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Test Trend_Season 

Source DF Mean Square F Value Pr > F 

Numerator 13 16284 194.84 <.0001 

Denominator 105 83.577582     

 
 
Here, the seasonal test indicates significant seasonal effects (p<.0001) while the trend 

test indicates no trend in the data.  The joint test of the absence of both trend and 

seasonal effects is naturally rejected.  

For Figure 3 the test results are: 

 

Test Trend 

Source DF Mean Square F Value Pr > F 

Numerator 2 214584 445.68 <.0001 

Denominator 105 481.473152     

 

Test Season 

Source DF Mean Square F Value Pr > F 

Numerator 11 167.325155 0.35 0.9724 

Denominator 105 481.473152     

 

Test Trend_Season 

Source DF Mean Square F Value Pr > F 

Numerator 13 33268 69.10 <.0001 

Denominator 105 481.473152     
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Here, the trend test indicates a significant trend while the seasonal effects are insignificant, 

as expected.  The joint test of the absence of both trend and seasonal effects is naturally 

rejected. 

For Figure 4 the test results are: 

 

Test Trend 

Source DF Mean Square F Value Pr > F 

Numerator 2 447984 961.80 <.0001 

Denominator 105 465.775770     

 

Test Season 

Source DF Mean Square F Value Pr > F 

Numerator 11 16575 35.59 <.0001 

Denominator 104 465.775770     

 

Test Trend_Season 

Source DF Mean Square F Value Pr > F 

Numerator 13 85015 182.52 <.0001 

Denominator 104 465.775770     

 

Here, the trend test indicates a significant trend while the seasonal test indicates significant 

seasonal effects as well.  The joint test is also highly significant as expected.   
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VIII. Conclusion 

 

 The Deterministic Trend / Deterministic Seasonal model is one of the oldest 

models used for forecasting time series.  Interestingly it is a special case of the UC model 

(apart from us assuming a higher order autoregressive error process).  However, many 

years ago there did not exist the software or computing power to execute the UCM thus the 

applicability of the DTDS model historically.  The DTDS does provide a useful testing 

framework for detecting trend, seasonal effects, and a combination thereof.  The biggest 

drawback, however, may be the fact that the infinite horizon prediction confidence 

intervals are bounded which is not very realistic given that most economic and business 

data seem to have stochastic trends in them with little mean reversion.  Despite this 

drawback, the DTDS model is quite interpretable, and in the presence of fixed seasonal 

effects is useful for identifying months which are seasonally strong as compared to those 

that are seasonally weak and for making comparisons of these strengths and weaknesses.   
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Appendix 

 

Properties of the AR(1) Error Term: 

 Now we prove the results stated in (7).  By backward substitution in (4’), it is easy 

to show that 

  2

2

1= tttt aaa                              (4’’) 

It follows that the mean of the t  is  
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The covariance between t  and 1t  is  
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In a similar manner it can be shown that  

  2=)(  j

jttE 
  

Then the autocorrelation function for the AR(1) model (4’) is  
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Derivation of the Cochrane-Orcutt equation (13) for use in obtaining the estimates of 

the parameters in the DTDS model with AR(1) errors 

 

 tttt DDty   12,1222       (3) 

Lagging (3) one period provides 

 112,1122,121 )1(   tttt DDty    .    (3’) 

Multiplying (3’) by   provides 

 112,1122,121 )1(   tttt DDty   .             (3’’) 

Subtracting (3’’) from (3’) provides 

)()()1()( 12,112,122,1221   tttttt DDDDtyy    
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         1 tt   

 
tttt aDDty  *

12,12

*

2,2

***                                        (13) 

as required. 

 

Derivation of the h-step-ahead standard error of hty 
ˆ : 

 Given the AR(1) error process, by recursive substitution we can show that  

 

ttht

h

ht

h

tttt

tttt

ttt

tttt

aaa

aaa

aaa

aa

aa

























11

1

12

2

3

3

12)3

2

12

2

12

=

=

(=

=

)(=













 

It then follows that  
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But at time t t  is no longer random and, as a result, we have  
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as desired.  

 

   

 


