
ESTIMATING BOX-JENKINS MODELS

1.  ARMA(0,0) Model
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The least squares estimator of  0φ  is the sample mean of y ,  yTy
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This estimator is obtained by minimizing the least squares criterion 
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with respect to 0φ  .  As it turns out, y  is also the method-of-moments estimator
of 0φ  since 0)( φ=tyE and the sample mean of y can be used to estimate it.

2.  AR(1) Model
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The least squares estimators of 1φ  and 0φ  are, respectively,
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by minimizing the least squares criterion  
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with respect to 0φ  and 1φ .

Alternatively, one could use the method-of-moments to estimate the parameters
0φ  and 1φ  .  Consider the following two moments.
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Therefore, a consistent method-of-moments estimate of 1φ  is

 11̂ r=φ , (3)

where 1r  is the first-order sample autocorrelation coefficient.  From (1) we see that the
sample mean of y ,  y , can be used to estimate )1( 10 φφ − .  That is,
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Substituting 11̂ r=φ  into (4) allows us to determine an method-of-moments estimator of

0φ  , namely,
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Although the least squares and method-of-moments estimators of 0φ  and 1φ  are not the
same in finite samples, they equal each other in infinite samples.

3.MA(1) Model
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Unfortunately, the least squares method cannot be used to estimate 0φ  and 1φ  in this
model since the “data” 1−ta  is not observable.  However, we can use the method of
moments to estimate these parameters.  Consider that 
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Replacing these moments with their sample estimates, we have



y=0φ̂ (8)

 and 1̂θ  so as to satisfy the moment condition
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and, at the same time, the invertibility condition 11̂ <θ .  Again, 1r  is the first-order

sample autocorrelation coefficient of the time series ty .  The two roots that will satisfy
(9) are 
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as long as 2/11 ≤r .  One then just chooses the root 1̂θ  that satisfies the invertibility
condition.


