
Forecasting with Box-Jenkins Models 
 
1. Minimum Mean Square Error Forecast 
 
 In this section we turn to the issue of determining point forecasts and their 
confidence intervals for some selected ARMA(p,q) and ARIMA(p,d,q) models.  Suppose 
our objective is to minimize the mean square error of forecasting  h periods ahead.  Let 
T represent the last time period 

ty
Tt ,2,1 L=  for which observations on the time series  

is available and  denote the h-step-ahead forecast of .  The mean square error 
of the forecast  in predicting  is defined to be  
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That is, the mean square error of the forecast is equal to the sum of the variance of 
the forecast and the squared bias of the forecast. 

hTy +ˆ

 
         Now consider the conditional mean of ),,,,|( 1,1 LL −−++ = TTTThThT aayyyEy

hTy +ˆ
.  

Denote this conditional mean by .  Then any predictor  can be represent by  hm
dmy hhT +=+ˆ  where d is the difference between the proposed predictor  and  .  

The mean square error of forecast is then 
hTy +ˆ hm
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where  has been used.  Therefore, to minimize the mean square error of 
forecast we should choose and the forecast  = (the conditional mean of 

) to minimize the mean square error of the forecast. 

0)( =−+ hhT myE
0=d hTy +ˆ hm

hTy +

 
2. Forecasting with the ARMA(0,0) Model 
 
         Consider the simpliest Box-Jenkins model 
 
                            tt ay += 0φ  ,                                                                          (3) 
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the white noise model ARMA(0,0).  Now let us determine the minimum mean square h-
step-ahead forecast , where )|( •+hTyE ),,,,,( 11 LL −−=• TTTT aayy is the conditioning set 
for the conditional expectation.  Then 
 
                            00 ]|)[()|( φφ =•+=• ++ hThT aEyE   .                                   (4) 
 
Therefore, the h-step-ahead minimum mean square error forecast of  for the 
ARMA(0,0) model is  

hTy +

 
                             0ˆ φ=+hTy ,   L,2,1=h .                                                       (5) 
 
However, the forecast  is not feasible (operational) because it is dependent on the 
unknown intercept 

hTy +ˆ

0φ  .  The intercept can, of course, be consistently estimated by the 

sample mean ∑
=

T

t
ty

1
=y= T0 /φ̂  .  Therefore, an approximate h-step-ahead minimum 

mean square error forecast is 
 
                              yy hT ==+ 0

ˆˆ̂ φ   .                                                                 (6) 
 
Of course, as the sample size for the time series goes to infinity ( , the 
approximate h-step-ahead minimum mean square error forecast (6) approaches the 
theoretical h-step-ahead minimum mean square error forecast (5). 

), ∞→tyt

 
3. Forecasting with the AR(1) Model 
 
           Now let us turn to prediction in the AR(1) model.  First, consider the problem of 
one-step-ahead forecasting in the AR(1) model 
 
                                ttt ayy ++= −110 φφ  .                                                       (7) 
 
Writing equation (7) for time period 1+T  we have 
 
                                tTT ayy ++=+ 101 φφ  .                                                     (8) 
 
Then 
 
                                )]|)[()|( 1101 •++=• ++ TTT ayEyE φφ  
 
                                                  = 110 ˆ +=+ TT yyφφ                                          (9) 
 
is the minimum mean square error one-step-ahead forecast of  . 1+Ty
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Similarly, 
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     = )|()|()|( 2110 •+•+• ++ TT aEyEE φφ   
 

     = )( 1010 Tyφφφφ ++   
 

     =                                          (10) 2
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is the minimum mean square error two-step-ahead forecast.  Likewise, the minimum 
mean error h-step-ahead forecast is derived as 
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where recall that the unconditional mean of  is y )1/( 10 φφµ −= . 
 
 From (11) we can see that the optimal h-step-ahead forecast in the AR(1) model 
requires that the mean of , y µ , be “add-factored.”  The add factor, , is 
dependent on the position of the last available observation  relative to the mean, 

)(1 µφ −T
h y

Ty
µ−Ty , and the first order autocorrelation coefficient discounted h periods, .  Suppose 

that the time series  is positively autocorrelated ( 0

h
1φ

ty 11 << φ ) and the last available 
observation  is below the mean (Ty 0<− µTy ).  Then the one-step-ahead forecast  
will be below the mean

1ˆ +Ty
µ and 1φ  of the distance between the last available observation 

 and Ty µ .  (See the lead production example examined in exercise 1.)  The two-step-
ahead forecast will likewise be below the mean but it will only be  of the distance 
between the last available observation and the overall mean of the data.  Obviously, as 
the forecast horizon, , increases to infinity, the optimal forecast approaches the overall 
mean of the data because the add-factor, , approaches zero as h .  This is 
typical behavior for stationary Box-Jenkins models.  As 

2
1

∞→

φ

h
)µ(1φ T

h y −
∞→h , the optimal forecast 

approaches the overall mean in the data.  (As we will see in the MA(1) model, this 
approach of the overall mean is sooner than later.) 
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 Obviously the optimal forecasts of (11) are going to forecast  with error.  The 
mean square error of the one-step-ahead forecast is calculated as  

hTy +
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By definition then, the standard error of the one-step-ahead forecast is  
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 The mean square error of the two-step-ahead forecast is calculated as 
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Similarly, the mean square error of the optimal h-step ahead forecast is 
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By definition, the standard error of the h-step-ahead forecasts for the AR(1) model is 
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 Of course, the theoretical minimum mean square error h-step-ahead forecasts (11) 
are not operational because the formula depends on the unknown parameter values µ  
and 1φ  .  They can, of course, be estimated by y=µ̂  and , the sample mean and 
the sample first-order autocorrelation coefficient, respectively.  Therefore, the 
approximate minimum mean square h-step-ahead forecast for the AR(1) model is 

11̂ r=φ

 
  )()ˆ(ˆˆˆ̂

11 yyryyy T
h

T
h

hT −+=−+=+ µφµ      (17) 
 
with an approximate standard error of forecast of 
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where Ta
T

t
ta ∑

=

=
1

2ˆσ̂ is the standard error of the residuals of the AR(1) model and the 

residuals are defined as .  See exercise 2 and the 
calulation of the 12 step ahead forecasts of lead production and their standard errors.  
You might note that letting 

)ˆˆ(ˆˆ 110 −+−=−= ttttt yyyya φφ

∞→h  in equation (15) implies that the mean square error of 
the infinite horizon forecast is just  
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which is the unconditional variance of the time series .  That is, the uncertainty in your 
forecasts can never be greater than the unconditional variance of the series itself and 
approach this limit as the time horizon of the forecast increases. 

ty

 
4. Forecasting with the MA(1) model 
 
 Now let us turn to the derivation of the minimum mean square forecasts for the 
MA(1) model 
 
   110 −−+= ttt aay θφ   .      (20) 
 
Considering the time period T + 1, the MA(1) model becomes 
 
   TTT aay 1101 θφ −+= ++ .                   (21) 
 
Taking the conditional expectation of (21) assuming  is known we have Ta
 
   ]|)[()|( 1101 •−+=• ++ TTT aaEyE θφ  
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          = 110 ˆ +=− TT yaθφ      (22)  
 
as the minimum mean square error one-step-ahead forecast for the MA(1) model. 
 
The approximate minimum mean square error one-step-ahead forecast then becomes 
 
         (23) TT ay ˆˆˆˆ̂

101 θφ −=+

 
where  is the residual at time T and, say, using the method of moments we can 
estimate 

Tâ

0φ  and 1θ  by, respectively,  y=0φ̂  and  so as to satisfy the moment condition 1̂θ
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and, at the same time, the invertibility condition 11̂ <θ

ty

.  Again,  is the first-order 

sample autocorrelation coefficient of the time series .  The two roots that will satisfy 
(24) are  

1r
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as long as .  One then just chooses the root  that satisfies the invertibility 
condition. 

2/11 ≤r 1̂θ

 
 

]

The minimum mean square error two-step-ahead forecast for the MA(1) model is 
obtained by solving 
 
   |)[()|( 11202 •−+=• +++ TTT aaEyE θφ  
 

         = 20 ˆ += Tyφ      (26)  
 
with an approximate minimum mean square error forecast of  
 
    yyT ==+ 02

ˆˆ̂ φ .     (27) 
 
It can easily be shown that the minimum mean square error h-step-ahead forecast for 

 is likewise 2≥h 0ˆ φ=+hTy .  In summary, the (approximate) minimum mean square error 
h-step ahead forecasts for the MA(1) model are 
 
   

 6



     =ŷ̂
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 As can be seen from (28), the optimal forecasts for the MA(1) model requires that 
we add-factor the mean for one period and then we adopt the mean for forecasts two or 
more periods ahead.  Then the forecast profile of the MA(1) model directly reflects the 
type of memory that the MA(1) model has – a one period memory.  That is, recall that the 
MA(1) model has a nonzero correlation at lag one, namely,  but )1/( 2

111 θθρ +−= 0=jρ  
for .  The MA(1) model has a one-period memory and, correspondingly, the optimal 
forecasts for the MA(1) model calls for add-factoring the mean for one period but not 
thereafter.  Note that the one-period add-factor is quite intuitive.  If the last available time 
series observation, , is larger than expected ( ) and if the data are positively 
autocorrelated at one lag ( ), then next period’s forecast will be above the mean but 
two and further step-ahead forecasts will adopt the mean as the optimal forecast.  
Similarly the minimum mean square error forecasts of the MA(2) leads to an add-
factoring of the same mean for two periods but, for three or more periods ahead, the 
sample mean is used.  In general the minimum mean square error forecasts for the MA(q) 
model add-factors the sample mean for q periods-ahead and then thereafter, the sample 
mean is used. 

2≥j

Ty 0ˆ >Ta
01̂ <θ

 
 Looking back over sections 2, 3, and 4 where we derived the minimum mean 
square forecasts for the ARMA(0,0), AR(1), and MA(1) models, we can see a pattern of 
add factoring the sample mean according to the type of memory that the data has.  In the 
case of the white noise model, the mean is always used and is never add-factored because 
white noise data has no memory.  When data follow the AR(1) model, the mean is always 
add-factored but in a diminishing way reflecting the infinite but diminishing memory of 
the AR(1) process.  In the case of the MA(1) model, the data has a one-period memory, 
therefore, the forecasts add-factor the mean for one-period-ahead forecasting but adopts 
the mean thereafter.  Even though we don’t derive the minimum mean square error 
forecasts for the ARMA(1,1) model, they behave much like the forecasts of the AR(1) 
model.  Given, that the autocorrelation function of the ARMA(1,1) model is diminishing, 
its memory is infinitely-lived but diminishing.  Therefore, it logically follows that the 
minimum mean square error forecasts of the ARMA(1,1) model add-factors the sample 
mean but in a diminishing way as the forecast horizon increases and only in the infinite 
horizon is the sample mean used.  In short, the Box-Jenkins methodology generates 
forecasts that carefully take into account the location of the last observation vis-à-vis the 
sample mean and the type of memory that characterizes the data.  Moreover the forecasts 
of stationary data eventually (sometimes sooner than later) achieve the mean and the 
standard errors of the forecasts approach the unconditional variance of the data as the 
forecast horizon approaches infinity. 
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5. Forecasting with Integrated ARIMA(p,d,q) models 
 
 Recall that for the Dow-Jones data (see the SAS program DOW.sas and Exercise 
4) we required that the data be differenced in order to make it stationary.  Then how do 
we forecast with ARIMA(p,d,q) models that require data to be differenced?  Let us focus 
on the case where the data  needs to be differenced only once (d=1) before it becomes 
stationary.  That is, the transformed series 

ty

1−−=∆ ttt yyy  is assumed to have a constant 
mean, constant variance, and constant covariance for each of the lags j = 1, 2, … .  In 
general, let us assume that we have the optimal h-step-ahead forecasts of the differences 

in , namely , available to us.  Given the last available observation, , we can 
construct the minimum mean square error forecasts of the original (level) data as follows: 

ty hTy +∆̂̂ Ty

 

  =y ; 11
ˆ̂ˆ̂

++ ∆+ TTT yy

  =y ; 21212
ˆ̂ˆ̂ˆ̂ˆ̂ˆ̂

+++++ ∆+∆+=∆+ TTTTTT yyyyy
   etc.         (29) 
 
 For example, we saw that the Dow-Jones data followed an ARIMA(0,1,1) Box-
Jenkins model.  Equivalently, the differences of the data follow an MA(1) model.  Then 
in generating the forecasts of the Dow-Jones Index we first need to generate the forecasts 
of the differences ∆  and then integrate them into the last available observation, as in 
(29) to obtain the forecasts of the original data.  Before doing that, let us first generate the 
optimal forecasts for the ARIMA(0,1,0), i.e. random walk, model. 

hTy +

 
 The random walk model with drift (ARIMA(0,1,0)) is written as 
 
  ttt ayy ++= −10φ  .       (30) 
 
The drift parameter is 0φ .  If 00 =φ , the data is “flat” and is neither drifting up or down.  
If 00 >φ , the data is drifting upward.  If 00 <φ , the data is drifting downward.  In 
differenced form (30) is written as 
 
  tt ay +=∆ 0φ  .       (31) 
 
That is, the differenced data, , follows a white noise model (ARMA(0,0)).  It follows 
that the approximate minimum mean square forecasts for 

ty∆

hTy +∆  are 
 

  yy hT ∆=∆ +
ˆ̂  for ≥h       (32) 1
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where ∑
=

−∆=∆
T

t
t Tyy

2
))1/(( is the sample mean of the differenced data,  . ty∆

 
Therefore, the approximate minimum mean square forecasts for  are hTy +

 

  yyyyy TTTT ∆+=∆+= ++ 11
ˆ̂ˆ̂  ; 

 

  yyyyyyyy TTTTT ∆+=∆+∆+=∆+= +++ 2ˆ̂ˆ̂ˆ̂
212 ; 

 
and, in general,  
 
  yhyy ThT ∆+=+

ˆ̂  ,  h  .     (33) 1≥
 
Thus, in the ARIMA(0,1,0) model the optimal forecasts begin with the last available 
observation, , and move in lock step in increments of Ty y∆  which is the “average drift” 
in the data.     
 
 Now consider forecasting with the ARIMA(1,1,0) model or, equivalently, an 
ARMA(1,0) model in the differences ty∆ .  The optimal forecasts of the AR(1) model 
imply that  
 

  )(ˆˆ̂
1 yyyy T
h

hT ∆−∆+∆=∆ + φ  ,         (34) 1≥h
 
where now  represents the estimated first-order autocorrelation coefficient for the 
AR(1) model of the  .  It follows that the level forecasts are 

1̂φ
sy'∆
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and, in general,  
 
  )ˆˆˆ)((ˆ̂

1
2

11
h

TThT yyyhyy φφφ +++∆−∆+∆+=+ L   
 

           = )ˆ1(ˆ1

ˆ
)( 1

1

1 h
TT yyyhy φ

φ
φ

−
−

∆−∆+∆+  .   (35) 

 
 Compare the h-step-ahead forecasts of the ARIMA(0,1,0) model, (33), with the h-
step-ahead forecasts of the ARIMA(1,1,0) model, (35).  The ARIMA(1,1,0) forecasts are 
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not equal to the trend line forecasts yhyT ∆+ of the ARIMA(0,1,0) model.  The basic 
trend yhyT ∆+ is add-factored by the amount )ˆˆˆ)(( 1

2
11

h
T yy φφφ +++∆−∆ L .  As the 

forecast horizon approaches infinity ( ∞→h ), the forecasts of the ARIMA(1,1,0) model 

approaches the trend line 
1

1

ˆ1

ˆ
)

φ
φ
−

∆+∆+ yyhyT ( −∆yT  .  

 
 Finally, consider forecasting with the ARIMA(0,1,1) model or, equivalently, an 
ARMA(0,1) model in the differences ty∆ .  The optimal forecasts of the MA(1) model 
imply that  
 

  






≥∆

=−∆
=∆ +

2,
1,ˆˆˆ̂ 1

hy
hay

y T
hT

θ
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where  now represents the T-th residual of the MA(1) model of the  and  is the 
estimated MA(1) coefficient of the same model.  It follows that the level forecasts are 

Tâ sy'∆ 1̂θ

 

  TTTTT ayyyyy ˆˆˆ̂ˆ̂
111 θ−∆+=∆+= ++  ; 

 

  TTTTT ayyyyy ˆˆ2ˆ̂ˆ̂ˆ̂
1212 θ−∆+=∆+= +++ ; 

 
and, in general,  
 
  TThT ayhyy ˆˆˆ̂

1θ−∆+=+   .      (37)  
 
 Compare the h-step-ahead forecasts of the ARIMA(0,1,0) model, (33), with the h-
step-ahead forecasts of the ARIMA(0,1,1), (37).  The ARIMA(0,1,1) forecasts are not 
equal to the trend line forecasts yhyT ∆+ of the ARIMA(0,1,0) model.  The basic trend 

yhyT ∆+ is add-factored once by the amount  and then changes by the “average 
drift”, 

Tâ1̂θ−
y∆ , thereafter.  After the first forecast, the forecasts follow the trend line 

Tâ1̂θT yhy ∆+ − .  (See the level forecasts of the Dow-Jones Index analyzed in Exercise 
4.)  For the ARIMA(0,1,1) model, the basic trend line yhyT ∆+ is add-factored once 
(reflecting the one period memory of the sy'∆  in the MA(1) model) while, for the 
ARIMA(1,1,0) model, the trend line yh∆+yT is continually add-factored but in a 
diminishing way (reflecting the infinite but diminishing memory of the ∆ in the AR(1) 
model).    

sy'
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