
Out-of-Sample Forecasting Experiment 
 
 

 Out-of-sample forecasting experiments are used by forecasters to determine if a 
proposed leading indicator is potentially useful for forecasting a target variable.  The 
steps for conducting an out-of-sample forecasting experiment are as follows: 
 

1) Divide the available data on the target variable, , (here we assume  is 
stationary) and the proposed leading indicator, 
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tx  is stationary) into two parts: the in-sample data set (roughly 80% of the 
data) and the out-of-sample data set (the remaining 20% of the entire data 
set).   

 
2) In consultation with the person who will be using your forecasts, choose an 

appropriate forecast horizon and loss function for the forecasting 
experiment.  The forecast horizon is the number of steps ahead that one is 
most interested in forecasting the target variable.  For example, if a person is 
in charge of managing the inventory of a firm, she might be only interested in 
obtaining accurate forecasts of sales one period ahead and the appropriate 
forecast horizon would be h = 1.  On the other hand, if interest centers on the 
sales that will be present 8 periods from now, just in time for the completion 
of a new manufacturing facility then the appropriate forecast horizon for the 
out-of-sample forecasting experiment would be h = 8.   

 
3) Once you have chosen the in-sample data set, you should use it to choose two 

competing forecasting models.  The first model you should build is a Box-
Jenkins model for the target variable, , and then, separately, build a 
Transfer Function model for  that includes your proposed leading 
indicator, .  It is these two competing models that you are going to run an 
out-of-sample “horserace” with. 
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4) To run a horserace (i.e. forecasting competition) between these two models, 

you must “roll” each model through the out-of-sample data set one 
observation at a time while each time forecasting the target variable the 
chosen h periods ahead.  (h is the forecast horizon of interest.)  The term 
“rolling” means that you re-estimate the parameters (coefficients) of each 
model with one more observation added to your estimation data each time you 
forecast the target variable h periods ahead.   

 
5) While you are rolling your competing models through the out-of-sample data 

set forecasting h periods ahead you need to record the errors of each model 
each time your forecast.  Knowing the errors of each model, say  and , 
and the particular loss function that our boss has chosen for us, say, , we 
can calculate the respective loss for the Box-Jenkins model, , 
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associated with a given forecast and the loss for the Transfer Function model, 
for a given forecast.  Let denote the last time period in the in-sample 

data set, h be the chosen forecast horizon, T be the total number of 
observations available (the sum of the number of observations in the in-
sample and out-of-sample data set), and M be the number of observations 
reserved for the out-of-sample data set.  It then follows that the in-sample data 
set contains T – M data points and we can forecast M – h + 1 times when 
rolling the competing forecasting models through the out-of-sample data set 
and with the chosen forecast horizon being h-steps ahead.  Likewise, when we 
roll the two competing models through the out-of-sample data set we will 
correspondingly have (M – h + 1) losses associated with the Box-Jenkins 
model 
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       and  (M – h + 1) losses associated with the Transfer Function model 
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6)  Now to decide the winner of the horserace between the BJ and TF models we 
must calculate the Average Loss associated with the two models that occurs 
over the (M – h + 1) forecasts produced by each model.  These Average 
Losses are calculated as the sample average of the (M – h + 1) losses 
associated with the (M – h + 1) forecasts produced by each forecasting 
model, namely,  
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Therefore the winner of the forecasting competition is the model that 
produces the smallest Average Loss in the out-of-sample forecasting  
experiment.  If ()( TF

t
BJ
t eLeL < , the BJ model is the winner and one would 

conclude that the leading indicator used in the TF model was not “potent” 
enough to offer a forecasting accuracy gain.  We should then begin a search  
for a better leading indicator to use.  On the other hand, if )()( BJ
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the TF model is the winner and we can conclude that we have found a leading 
indicator that is useful for forecasting the target variable  and we, as ty
economists, have beaten the statistician in forecasting since he/she is not 
aware of the leading indicator and, in adopting the Box-Jenkins model, is 



working without it. 
 

7)  In case the “boss” does not have a specific loss function to describe the losses 
 associated with forecast errors, one can always adopt the “standard” average 
 loss functions, MAE and MSE.  The Mean Absolute Error (MAE) average 
 loss function is defined as 
 

   MAE = ∑ e     . 
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 The Mean Squared Error (MSE) average loss function is defined as  
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  The forecasting method that has the smallest MAE and MSE average losses 
  in the out-of-sample forecasting experiment is then the superior forecasting 
  method.  If one forecasting method has a better MAE measure while the 
  other forecasting method has the better MSE method then you have a split 
  decision.  Then the only way you can determine a winner between the two 
  competing forecasting models is to break down and choose one of the 
  average loss functions to base your choice on, either the MAE average loss 
  function or the MSE average loss function.       


