
SEASONAL DIFFERENCING 
IN THE BOX-JENKINS APPROACH 

 
 

I. Using the Autocorrelation Function to determine if there is possible seasonality in 
your data 
 
 Case 1: Data are Flat.  Consider the case where the data are flat as in the influenza 

data that we previously studied when we were examining the exponential smoothing 

method of forecasting. Look at the SAS program Seas Diff Case 1.sas and run it.  Here 

we plot the data and note that it is non-trending (flat) and thus all we need to do is 

examine the autocorrelation function of the raw data to see if there exist significant 

autocorrelations at the seasonal lags j = 12, 24, 36, and 48.  In fact, there appear fairly 

significant autocorrelations at these lags, thus hinting that we need to assume that 

seasonality is playing a significant role in determining the variation in this data.  In 

general, when you have “flat” time series data you can simply plot the sample ACF of the 

data and see if there are “spikes” in it at (and possibly around) the seasonal lags of s, 2s, 

3s, 4s, etc.  If there are, then more than likely the data has seasonality in it and you should 

consider some form of seasonal differencing to make your data stationary.  More will be 

said below on formal tests for whether you should actually “seasonally” difference your 

data or not.   

 

 Case 2: Data has Trend.  In the case that the time series data at hand has a trend in 

it, we should first difference the data to remove the trend and then consider the 

autocorrelation function for the differenced data for signs of seasonality at the seasonal 

lags.  By first differencing the data we mean forming the series  and 

then examining the autocorrelation function of 

*
1 tttt yyyy =−=Δ −

tyΔ .  For example, consider the Plano 

sales tax revenue data that is contained in the SAS program Seas Diff Case 2.sas.  Since it 

has trend in it, we should first difference the Plano sales tax revenue data and then 

inspect the autocorrelation function of the first-differenced data for significant spikes at 

the seasonal frequencies of s, 2s, 3s, and 4s to determine the possible presence or absence 

of seasonality in the original data.  In fact, there are significant autocorrelations at the 
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seasonal lags 12, 24, 36, and 48 and thus one should consider the possibility of seasonally 

differencing the data in order to make it stationary. 

 

 II.  The general notation for the Multiplicative Seasonal Box-Jenkins model:   
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This model is denoted as . sQDPxqdpARIMA ),,(),,(
 

 

 III. Using the Hasza and Fuller (1982) and Dickey-Hasza-Fuller (1984) Seasonal 
Unit Root tests to determine the appropriate differencing of time series data subject 
to seasonal variation 
 
See the SAS program Plano_Unit_2.sas for an example of seasonal unit root testing as 
applied to the Plano Sales Tax Revenue data.   
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 Invariably, in the Box-Jenkins approach, the two most frequently used 

transformations for converting time series data that contain seasonality to stationarity are 

(1) first and seasonal span differencing represented by the differencing operation  

tsststttsttsttsttts yyyyyyyyyyyy 1111111 )()()( ΔΔ=+−−=−−−=−Δ=ΔΔ −−−−−−−−−        

or (2) simply seasonal span differencing denoted by 

  . sttts yyy −−=Δ

Here s denotes the frequency of the season (s = 12 for monthly data, s = 4 for quarterly 

data, and s = 2 for bi-annual data).  Notice, in the case of the first and seasonal span 

differencing, the order in which the differencing is performed is of no consequence as the 
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differencing operators  and  are commutative.  If s = 12, the first transformation is, 

in words, the month-to-month change in the year-over-year difference in the data (or, 

equivalently, the year-over-year difference in the month-to-month change in the data) 

while the second transformation is just the year-over-year difference in the data.  Of 

course, if one chooses to use the logarithmic transformation of the data where, say, 

 is the natural logarithmic transformation of the original data, , 

then the first transformation is stated as being the month-to-month change in the year-

over-year percentage change in the data (or, equivalently, the year-over-year difference 

in the month-to-month percentage change in the data). 

1Δ sΔ
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III.A. Hasza-Fuller Test of ts yH ΔΔ10 :  is appropriate transformation versus 

 is not the appropriate transformation. ts yH ΔΔ11 :

 The Hasza-Fuller test equation (in the case of s = 12) is  
 

tptpttttttt ayyyyyyyy +ΔΔ++ΔΔ+−+−+= −−−−−−− 1121112113123131211 )()( γγβββ L    
 
with a null hypothesis that  is the correct transformation for rendering the 

seasonal to be stationary (here tested by the parametric restrictions 

ty112ΔΔ

ty

1,0,1: 3210 === βββ andH ).  The alternative hypothesis is that ty112ΔΔ  is not the 

correct transformation of the data.  Note the augmenting terms of the test equation are 

those terms associated with the gamma coefficients.  The number of augmenting terms 

(p) is usually chosen to minimize the AIC or SBC goodness-of-fit criterion of the test 

equation. 

 

III.B. Dickey-Hasza-Fuller Test of ts yH Δ:0 is the appropriate transformation 

versus is not the appropriate transformation. ts yH Δ:1

 

          The Dickey-Hasza-Fuller test equation (in the case of s = 12) is  
  
 tptptttt ayyyyy +Δ++Δ+=− −−−− 12112112112 γγβ L  
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  with a null hypothesis that  is the correct transformation for rendering the seasonal ty12Δ

 to be stationary (here tested by the parametric restriction ty 0: 10 =βH ).  The alternative 

 hypothesis is that is not the correct transformation of the data.  Note ty12Δ

 the augmenting terms of the test equation are those terms associated with the gamma 

 coefficients.  The number of augmenting terms (p) is usually chosen to minimize the 

 AIC or SBC goodness-of-fit criterion of the test equation. 
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