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Introduction 

 

 The formulation of exponential smoothing forecasting methods arose in the 

1950’s from the original work of Brown (1959, 1962) and Holt (1960) who were working 

on creating forecasting models for inventory control systems.  One of the basic ideas of 

smoothing models is to construct forecasts of future values as weighted averages of past 

observations with the more recent observations carrying more weight in determining 

forecasts than observations in the more distant past.  By forming forecasts based on 

weighted averages we are using a “smoothing” method.  The adjective “exponential” 

derives from the fact that some of the exponential smoothing models not only have 

weights that diminish with time but they do so in an exponential way, as in j

j   where 

11    and ,2,1j  represents the specific period in the past. 

 At least three major points can be raised about exponential smoothing models: 

 As a methodology, exponential smoothing methods suffer from not having an 

objective statistical identification and diagnostic system for evaluating the 

“goodness” of competing exponential smoothing models.  For example, the 

smoothing parameters of the smoothing models are determined by fit and are not 

based on any statistical criteria like tests of hypotheses concerning parameters or 

tests for white noise in the errors produced by the model.   In this sense, 

exponential smoothing models are ad hoc models, statistically speaking.  Of 

course, if one continues to monitor the forecasting performance of a given 

exponential smoothing model, and, if the model’s forecasts become more and 

more inaccurate over time, then one has, in a sense, an ex post evaluation method 

for picking and choosing between competing exponential smoothing models.  The 
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only problem is that this approach comes with a cost.  Bad forecasting for a 

certain amount of time while learning can be expensive when, for example, 

dealing with inventories that run into the millions of dollars.  But instead of 

pursuing this ex post monitoring approach, one can attempt to make a good 

choice of exponential smoother before hand by using out-of-sample forecasting 

experiments.   In this approach, the forecaster reserves some of the available data 

for a “horse race” between competing exponential smoothing methods.  To carry 

these horse races out, one divides the data into two parts: the in-sample data set 

(say 60% of the first part of the available time series data) and with the remaining 

latter part of the time series assigned to the out-of-sample data set.  Then one 

“runs” the competing exponential smoothing methods through the out-of-sample 

data while forecasting h-steps ahead each time (we assume h is the forecast 

horizon of interest) while updating the “smoothing” parameter(s) as one moves 

through the out-of-sample data.  In the process of generating these h-step-ahead 

forecasts for the competing methods we can compare the competing forecasts 

with the actual values that we withheld as we generated our forecasts and then use 

the standard forecasting accuracy measures like MSE, MAE, RMSE, PMAE, etc. 

to choose the best (most accurate) exponential smoothing forecasting method, as 

indicated by the out-of-sample forecasting experiment, for further use (subject to 

monitoring of course). 

 Most exponential smoothing methods, as we will see below, can be shown to be 

special cases of the class of Box-Jenkins models.  For this reason, Box-Jenkins 

forecasters have been critical of using exponential smoothing models for 

forecasting.  They usually say, “Why be satisfied with a special case of a Box-

Jenkins model when we can fit any Box-Jenkins model we want to the data?  

Moreover, we can use the various diagnostic tests that are available to choose a 

good Box-Jenkins model without being ad hoc in our model choice.”  This, of 

course, is a very persuasive argument and is the reason why many forecasters use 

standard Box-Jenkins computer software for doing their forecasting. 

 A counterargument to the traditional Box-Jenkins criticism of exponential 

smoothing methods is that, once basic decisions like the presence or absence of 
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trend in the time series and the presence or absence of seasonality is determined, 

pretty accurate forecasting can be obtained even to the point of being “almost” as 

accurate as the “fully flexible” and non-ad hoc Box-Jenkins models.  The fact that 

carefully chosen exponential smoothing models do almost as well as Box-Jenkins 

models has been documented in two large-scale empirical studies by Makridakis 

and Hibon (1979) and Makridakis et. al. (1982).  So if the Box-Jenkins models are 

more time consuming to build yet only yield marginal gains in forecasting 

accuracy relative to less time-consuming well informed choices of exponential 

smoothing models, we have an interesting trade off between time (which is 

money) and accuracy (which, of course, is also money).  This trade-off falls in the 

favor of exponential smoothing models sometimes when, for example, one is 

working with 1500 product lines to forecast and has only a limited time to build 

forecasting models for them.  In what we will argue below, an informed choice 

consists of knowing whether the data in hand has a trend in it or not and 

seasonality in it or not.  Once these basic decisions are made (and if they are 

correct!), then pretty accurate forecasts are likely via the appropriately chosen 

exponential smoothing method.   

 

 So for those individuals that have heavy time constraints, it is probably worth 

investigating the possibility of using exponential smoothing forecasting models for the 

“less important” time series and saving the most important time series for modeling and 

forecasting with Box-Jenkins methods.  

 In the next section we are going to describe the basic Additive Smoothing model 

and how its smoothing parameters and prediction intervals are determined.  In the 

following section we will discuss four sub-cases of this model that are available in SAS 

Proc Forecast.        

       

    II. The Additive Smoothing Model 

 

  Basic Notation 

 

 Given a time series, ty , t= T,,2,1  , the Additive Smoothing model is of the 

form 
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  tptttt aSty  ,  ,             Tt ,,2,1  ,   (1) 

 

where t  represents the time-varying mean (level) term, t  represents the time-

varying slope term (called “trend” term by exponential smoothers), ptS , denotes the 

time-varying seasonal term for the p seasons ),,2,1( Pp   in the year, and ta   is a 

white noise error term.  For smoothing models without trend, 0t for all t, and for 

smoothing models without seasonal effects, 0, ptS for all p .  (This model is, of course, 

the Basic Structural Model of A.C. Harvey (1989) that we previously discussed when 

using Proc UCM in SAS.)  At each time period t, each of the above time-varying 

components ),,( , pttt S  are estimated by means of so-called smoothing equations.  By 

way of notation, let tL   be the smoothed level that estimates t , tT be the smoothed 

slope that estimates t , and the smoothed seasonal factor tS estimates the seasonal 

effect ptS , at time t.   

 The smoothing process begins with initial estimates of the smoothing states 

,, 00 TL and PSSS ,02,01,0 ,,,  .  These smoothing states are subsequently updated for each 

observation by means of smoothing equations.  These smoothing equations determine 

how the smoothing states change over time.  Knowledge of the smoothing state at time 

t -1 and the knowledge of the observation ty  at time t, along with smoothing weights 

uniquely determine the smoothing states at time t.  The smoothing equations for each 

smoothing model will be discussed subsequently. 

  

 Initialization of the Smoothing States 

 

 Given the time series ty , Tt ,2,1  , the smoothing process begins by computing 

the smoothing states for time t = 1.  However, this computation requires initial estimates 

of the smoothing states at time t = 0, ,, 00 TL and PSSS ,02,01,0 ,,,  , even though there exist 

no observations on ty on or before t = 0.  These initial values of the smoothing states are 
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obtained by the method of backcasting.  Consider the “Seasonal Factors Sum to Zero” 

parametrization of the Deterministic Trend/Seasonal model with AR(0) errors: 

  tPtpttt aDDDty  ,2,21,1        (2) 

where the restriction 021  P   is imposed.  Now the choices for the initial 

smoothing states for backcasting are obtained by re-ordering the original y data from t 

= T to t = 1 (in reverse order) and then running least squares on equation (2) and 

obtaining the least squares estimates P ˆ,,ˆ,ˆ,ˆ,ˆ
21  .  Then the initial slope state for 

backcasting purposes is estimated as ̂,0 bT , the initial seasonal states for 

backcasting are estimated as ,1̂,1,0 bS  ,ˆ
2,2,0 bS , and PbPS ̂,,0  , while the initial 

level for the backcast, bL ,0 , is simply set equal to Ty .  Then, once the initial states of the 

backcasts are determined, the given model is smoothed in reverse order to obtain 

estimates (backcasts) of the initial states ,, 00 TL and PSSS ,02,01,0 ,,,  .     

 

 Prediction and Prediction Errors 

 

Predictions are based on the last known smoothing state as we will see below.  

Denote the predictions of y made at time t for h periods ahead as hty 
ˆ and the h-step-

ahead errors in prediction as hththt yye   ˆ .  The one-step-ahead prediction errors 

1te are also the model residuals and the sum of squares of the one-step-ahead 

prediction errors is the objective function used in weight (parameter) optimization in 

the smoothing models. 

The variance of the prediction errors are used to calculate the confidence limits of 

predictions made by the smoothing models.  The equations for the variance of the 

prediction errors for each smoothing model will be listed in the following sections.  

NOTE:  Var( ta ) is estimated by the mean square of the one-step-ahead predictions errors, 

 





1

0

2

1 )/ˆ()r(âv
T

t

tt Tea .        (3) 

 

 Smoothing Weights 
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 Depending on the particular smoothing model, the smoothing weights consist of 

the following: 

       is the level smoothing weight. 

        is the trend smoothing weight.      (4) 

        is the seasonal smoothing weight. 

Larger smoothing weights (less damping) permit the more recent data to have a greater 

influence on the predictions.  Smaller smoother weights (more damping) give less weight 

to recent data.  The above weights are restricted to “invertible” regions so as to guarantee 

stable predictions.  As we will see, the smoothing models presented below have ARIMA 

(Box-Jenkins) model equivalents.  That is, the smoothing models can be shown to be 

special cases of the more general Box-Jenkins models which we will study in detail later.         

  The above smoothing weights are chosen to minimize the sum of squared one-

step-ahead prediction errors, 






1

0

2

1

T

t

te .  Usually this is done by doing a grid search across 

the invertible region of the smoothing weights and calculating the corresponding sum of 

squared errors by means of what is called the Kalman Filter.  Being more specific, in the 

case of the Additive Smoothing Model (1), the previous states 111 ,,,,,  tttttt STLSTL  

are used to produce the predicted states ,ˆ,ˆ
11  tt TL and 

1
ˆ
tS  for next period.   These 

predicted states then provide next period’s predicted value 
1111

ˆˆˆˆ
  tttt STLy which in 

turn produces the one-step-ahead prediction error 111
ˆ
  ttt yye .  Therefore, for fixed 

values of the smoothing weights, say ,, ii  and i , one can recursively generate the sum 

of squared one-step-ahead prediction errors 





1

0

2

1),,(
T

t

tiii eS  .  Finally, one can do a 

grid search over the ),,(   invertible space and choose the smoothing weights, say 

,, **  and * , that minimize ),,( iiiS  .  Once these optimal smoothing weights are 

chosen, the exponential smoothing equations can be used to generate forecasts out-of-

sample.   
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III. Four Simple Additive Exponential Smoothing Models 

 

 1. SIMPLE EXPONENTIAL SMOOTHING 

 

(This model should be used when the time series data has no trend and no 

seasonality.) 

 

 The simple exponential smoothing model is given by the model equation 

 ttt ay   .         (5) 

The smoothing equation is  

 1)1(  ttt LyL  .         (6) 

The h-step-ahead prediction equation is  

 tht Ly 
ˆ   ,      ,2,1h  .       (7) 

That is, you forecast y h-steps ahead by using the last available estimated (smoothed) 

level state, tL . 

 The ARIMA model equivalent to the simple exponential smoothing model is the 

ARIMA(0,1,1) model 

 tt aByB )1()1(          (8) 

where  1  and B represents the backshift operator such that rtt

r xxB  for any 

given time series tx .   

 The invertible region for the simple exponential smoothing model is 20  . 

The variance of the h-step-ahead prediction errors is given by 

  ))1(1)var(1)var()var( 2
1

1

2  







 





 haae t

h

j

tht .   (9) 

 

 

 2. DOUBLE (BROWN) EXPONENTIAL SMOOTHING 
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(This model should be used when the time series data has trend but no seasonality.) 

 

The Double exponential smoothing model is given by the model equation 

 tttt aty   .        (10) 

The smoothing equations are  

 1)1(  ttt LyL          (11) 

 11 )1()(   tttt TLLT   .       (12) 

The h-step-ahead prediction equation is  

 ttht ThLy )/1)1((ˆ    ,      ,2,1h  .     (13) 

That is, you forecast y h-steps ahead by taking the last available estimated level state and 

multiplying the last available trend (slope), tT , by )/1)1(( h . 

 The ARIMA model equivalent to the linear exponential smoothing model is the 

ARIMA(0,2,2) model 

 tt aByB 22 )1()1(        (14) 

where  1 .  The invertible region for the double exponential smoothing model 

is 20  . 

   The variance of the h-step-ahead prediction errors is given by 

 







 







1

1

22 ))1(2(1)var()var(
h

j

tht jae  .     (15) 

 

 3. SEASONAL EXPONENTIAL SMOOTHING 

 

(This model should be used when the time series data has no trend but seasonality.) 

 

The seasonal exponential smoothing model is given by the model equation 

 tpttt aSy  , .        (16) 

The smoothing equations are  

 1)1()(   tPttt LSyL         (17) 

 Ptttt SLyS  )1()(   .       (18) 
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The h-step-ahead prediction equation is  

 hPttht SLy  ˆ   ,      ,2,1h  .      (19) 

That is, you forecast y h-steps ahead by using taking the last available estimated level 

state and then add the last available smoothed seasonal factor, hPtS  , that matches the 

month of the forecast horizon. 

 The ARIMA model equivalent to the seasonal exponential smoothing model is 

the ARIMA pP )0,1,0)(1,1,0(   model 

 t

PP

t

P aBBByBB )1()1)(1( 1

321

      (20) 

where  11 ,  )1(12   , and )1)(1(3   . 

The invertible region for the seasonal exponential smoothing model is 

   2)1()0,max( P .        (21) 

The variance of the h-step-ahead prediction errors is given by 

 







 







1

1

2
1)var()var(

h

j

jtht ae        (22) 

where 

 









0)mod(),1(

0)mod(,

Pj

Pj
j




  .      (23) 

 

 4. WINTERS METHOD – ADDITIVE VERSION WITH SEASONALITY 

 

(This model should be used when the time series data has trend and seasonality.) 

 

The seasonal exponential smoothing model is given by the model equation 

 tptttt aSty  , .       (24) 

The smoothing equations are  

 ))(1()( 11   ttPttt TLSyL        (25) 

 11 )1()(   tttt TLLT         (26) 

 Ptttt SLyS  )1()(   .       (27) 

The h-step-ahead prediction equation is  
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 hPtttht ShTLy  ˆ   ,      ,2,1h  .     (28) 

That is, you forecast y h-steps ahead by using taking the last available estimated level 

state and incrementing it h times using the last available trend (slope) tT  while at the 

same time adding the last available smoothed seasonal factor, hPtS  , that matches the 

month of the forecast horizon. 

 The ARIMA model equivalent to the seasonal exponential smoothing model is 

the ARIMA pP )0,1,0)(1,1,0(   model 

 t

P

i

i

it

P aByBB 





1

1

)1()1)(1(        (29) 

where 

 























1),1)(1(

),1(1

12,

1,1

Pj

Pj

Pj

j

j









 .      (30) 

 

The invertible region for the Winters method is 

   2)1()0,max( P  

)cos(1)](1(2[0   .   

 The variance of the h-step-ahead prediction errors is given by 

 







 







1

1

2
1)var()var(

h

j

jtht ae        

 (31) 

where 

 









0)mod(),1(

0)mod(,

Pjj

Pjj
j




  .     (32) 
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 THE KALMAN FILTER 

 The above smoothing models can be put into so-called “State Space Form” and 

then the Kalman Filter can be used to recursively solve for the one-step-ahead forecast 

errors of the model given its initial states.  By so doing we can get the sum of squared 

errors of the one-step-ahead forecasts of the model for given smoothing weights.  Then 

iteratively using the Kalman Filter the optimal smoothing weights can be determined by 

finding those weights that minimize the sum of squared errors of the one-step-ahead 

forecasts.  For more discussion on the Kalman Filter and its updating equations one can 

refer to Hamilton (1994), Chapter 13.   

 

IV. An Application and Some Comments  

 

 Appropriate Choice of Exponential Smoother By Identifying the Salient 

 Characteristics of the Data 

In some forecasting situations a forecaster must forecast many times series (think 

about 1500 product lines, for example) in a very short period of time.  It is in this kind of 

situation then the above smoothing models can be very useful.  Choosing an appropriate 

smoothing model is largely dependent on recognizing whether there is or is not a trend in 

the data and if seasonality is or is not present in the data.  Recapping, the appropriate 

smoothing model can be chosen as in the below table where Y = Yes and N = No.   

 

Model to Choose   Trend Present  Seasonality Present 

Simple Exponential Smoothing           N     N 

Double (Brown) Exponential Smoothing     Y     N 

Seasonal Exponential Smoothing           N     Y 

Winters Method – Additive Version           Y                                     Y 

 

PROC FORECAST in SAS produces the forecasts implied by the above 

smoothing models.  All you have to do is choose the right forecast option.  Consider the 

following table. 
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Model    SAS PROC FORECAST OPTIONS 

Simple Exponential Smoothing                   Method = EXPO  Trend = 1 

(Trend = N, Season = N) 

 

Double (Brown) Exponential Smoothing          Method = EXPO  Trend = 2 

(Trend = Y, Season = N) 

 

Seasonal Exponential Smoothing               Method = Addwinters Trend = 1 

(Trend = N, Season = Y)   Season = 12  (or Season = 4 if quarterly) 

         

Winters Method – Additive Version              Method = Addwinters Trend = 2 

(Trend = Y, Season = Y)   Season = 12 (or Season = 4 if quarterly) 

 

 An Application: The Plano Sales Tax Revenue Data 

 

 Recall the Plano Sales Tax Revenue data that we have previously analyzed.  It is 

plotted in the graph below: 
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 In terms of uncovering the nature of the Plano Sales Tax Revenue data we report 

below F-tests for trend, curvature of trend, seasonality, and a joint test for trend and 

seasonality using the autocorrelated error DTDS model 
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tttttt DDDDtty   12,12332211

2    (33) 

with 

  trtrttt a   2211 .     (34) 

The relevant null hypotheses of these tests are 

  0:0 H      (No trend)      (35) 

  0:0 H      (No curvature in trend)    (36) 

  0: 12320   H       (No seasonality)    (37) 

  0: 12320   H  .    (38) 

The outcomes of these tests produced by Proc Autoreg in SAS are as follows: 

 

Test Trend 

Source DF Mean Square F Value Pr > F 

Numerator 2 8.2658644E12 166.37 <.0001 

Denominator 174 49682814486     

 

Test Curvature 

Source DF Mean Square F Value Pr > F 

Numerator 1 125488100508 2.53 0.1138 

Denominator 174 49682814486     

 

Test Season 

Source DF Mean Square F Value Pr > F 

Numerator 11 3.4522094E12 69.48 <.0001 

Denominator 174 49682814486     

 

Test Trend_Season 

Source DF Mean Square F Value Pr > F 

Numerator 13 4.1476364E12 83.48 <.0001 

Denominator 174 49682814486     
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 As we can see, trend is significant, curvature is not, seasonality is significant, and 

jointly speaking, both trend (in this case linear trend) and seasonality are significant.  

These results suggest that the Additive Winters method with trend and seasonality 

(24) is the recommended smoothing model for the Plano Sales Tax Revenue data. 

 In the case that the Plano City manager is sitting at December of 2005 wanting to 

forecast the 2006 revenues of the city, the appropriate SAS code for producing the 

necessary 13 forecasts are as follows:  

 proc forecast data = plano method = addwinters seasons = 12  

        trend=2 lead=13 outlimit out=forecast; 

 var rev; 

 id date; 

 run; 

 

 proc print data = forecast; 

     run; 

 

The resulting forecasts and their 95% confidence intervals are reported below: 

 

  

Forecasting Plano Sales Tax Revenue Data 

Using Additive Winters Smoothing 

with trend and seasonality 

 

Obs date _TYPE_ _LEAD_ rev 

1 NOV05 FORECAST 1 3756519.60 

2 NOV05 L95 1 3249487.85 

3 NOV05 U95 1 4263551.35 

4 NOV05 FORECAST 2 4031666.11 

5 NOV05 L95 2 3521192.35 

6 NOV05 U95 2 4542139.88 

7 NOV05 FORECAST 3 6443738.67 

8 NOV05 L95 3 5929164.54 

9 NOV05 U95 3 6958312.80 

10 NOV05 FORECAST 4 3993022.40 

11 NOV05 L95 4 3473643.64 

12 NOV05 U95 4 4512401.16 

13 NOV05 FORECAST 5 3780119.96 

14 NOV05 L95 5 3255190.81 

15 NOV05 U95 5 4305049.10 

16 NOV05 FORECAST 6 5473080.31 

17 NOV05 L95 6 4941818.28 

18 NOV05 U95 6 6004342.33 

19 NOV05 FORECAST 7 4258830.36 
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20 NOV05 L95 7 3720421.25 

21 NOV05 U95 7 4797239.47 

22 NOV05 FORECAST 8 4127269.01 

23 NOV05 L95 8 3580872.11 

24 NOV05 U95 8 4673665.90 

25 NOV05 FORECAST 9 5531792.38 

26 NOV05 L95 9 4976545.76 

27 NOV05 U95 9 6087038.99 

28 NOV05 FORECAST 10 4222187.17 

29 NOV05 L95 10 3657212.88 

30 NOV05 U95 10 4787161.47 

31 NOV05 FORECAST 11 4216839.10 

32 NOV05 L95 11 3641248.20 

33 NOV05 U95 11 4792430.00 

34 NOV05 FORECAST 12 5635095.12 

35 NOV05 L95 12 5047992.51 

36 NOV05 U95 12 6222197.72 

37 NOV05 FORECAST 13 4038422.10 

38 NOV05 L95 13 3438623.43 

39 NOV05 U95 13 4638220.76 

 
 
   These forecasts are generated by recursively solving forward the smoothing 

equations (25) – (27) and applying the prediction equation (28).  The calculation of the 

confidence intervals is described in the next section.   

  

Constructing Confidence Intervals for Exponential Smoothers 

 

Consider the task of constructing forecasting confidence intervals for the 

smoothing models.  In the above discussion we gave some expressions for the 

(population) variance of the h-step-ahead forecast errors of the various smoothing models 

labeled as var( hte  ).  Then the )%1(   confidence interval for predicting hty   is given 

by  

    1])ˆ(ˆ)ˆ(ˆPr[ 2/2/ zyseyyzysey hththththt ,   (39) 

where  2/z  is that value of the standard normal random variable that satisfies the 

requirement that 2/)Pr( 2/   zz and the standard error of the forecast hty 
ˆ  is 

calculated by taking the square root of the estimate of the variance of the h-step-ahead 
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forecast error, var( )hte  .  But var( )hte   is easily estimated by replacing var( ta ) with 







1

0

2

1 )/ˆ()r(âv
T

t

tt Tea  and replacing all of the unknown smoothing weights with the 

estimated weights that minimize the one-step-ahead forecast errors of the model. 

 Upon examination of the forecast error variances of the four exponential 

smoothing models previously discussed (see (9), (15), (22), and (31)) it becomes clear 

that these error variances are a monotonic function of the forecast horizon h.  The 

further out into the future the forecast is made, the more uncertain the prediction of hty  .  

Moreover, the forecast confidence intervals on the previous exponential smoothers are 

unbounded in the limit ( h ), unlike the forecast confidence intervals of the DTDS 

model, which are bounded.  Of course this result obtains because of the stochastic 

treatment of the trend and seasonality in the smoothing models.  Thus, even when the 

point forecasts of the deterministic trend DTDS models and exponential smoothing 

models do not differ very much, at longer horizons the “stochastic trends” of the 

exponential smoothing models will admit more uncertainty vis-à-vis their forecast 

confidence intervals than the DTDS models which have bounded forecast confidence 

intervals.  The choice between “stochastic trend” confidence intervals and “deterministic 

trend” confidence intervals will then depend on experience with each individual series 

and how accurate the “coverages” are of the competing confidence intervals in 

forecasting applications.  That is, do the 95% forecast confidence intervals of a 

forecasting method encompass roughly 95 out of the next 100 out-of-sample forecasts or 

not?  If the coverage of a method’s 95% confidence intervals are only, say, 65% out of 

100 trials, one can probably conclude that the method’s characterization of forecasting 

uncertainty is amiss and another forecasting method should be entertained if one’s 

interest goes beyond just accurate point forecasting and also focuses on the accuracy of 

one’s stated forecast uncertainty.  See Corradi and Swanson (2005) for a nice discussion 

of the validation of competing forecasting methods by comparing not only the accuracies 

of the point forecasts of the competing methods but also the performance of competing 

confidence intervals in out-of-sample experiments.     
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 Further Calibration of Exponential Models 

   

 If one wanted to even more finely “calibrate” which exponential smoothing model 

to use for forecasting, a very nice reference to consult is the survey paper by Everette S. 

Gardner, Jr. “Exponential Smoothing: The State of the Art,” Journal of Forecasting, vol. 

4 (1985), pp. 1 – 38.  In particular, consider the following reproduction of Exhibit 1 in 

that paper. 

 

You will notice that the forecast profiles for various exponential smoothing 

models are broken out into 12 different “boxes” in the table.  The rows are labeled by the 

type of trend present in the data: “constant level” (i.e. no trend), “linear trend”, 
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“exponential trend”, and “damped trend”.  The columns are labeled by the choice of 

seasonality: “non-seasonal”, “additive seasonality”, and “multiplicative seasonality”.  

Under each forecast profile is the model number(s) (used in the paper) that map to that 

specific forecast profile.  To use a fishing analogy, “This is like fishing for fish in a 

barrel!”  All you have to do is figure out which box’s forecast profile best matches the 

“shape” of the data that you have at hand.  Then a specific smoothing model can be 

correspondingly chosen.  In the discussion here we have emphasized the methods 

appropriate for the four boxes in the northwest corner of Gardner’s diagram, the choices 

being only over trend and seasonality. 

Of course, the DTDS model we previously discussed could be beneficial in 

discriminating between which of the above “boxes” we should choose.   Consider the 

following two DTDS models, the first modeling the level of the time series, ty , and the 

second modeling the logarithm of the time series, )log( ty : 

 
tttttt DDDDtty   12,12332211

2       (40) 

 
tttttt DDDDtty   12,12332211

2)log(     (41) 

both specifications having the usual AR(r) autocorrelated error term 

 trtrttt a   2211  .     (42) 

Notice the quadratic term 2t has been included to allow for testing for the curvature of 

trend.  Going down the rows of the Gardner diagram, the standard test of trend in (40) 

will allow you to choose between the first two rows while if (41) fits the data better than 

(40) thus implying exponential growth then you could focus on the third row of 

“exponential trend”.  Comparing the level and log fits of (40) and (41) would require that, 

when you estimate (41), you translate the fitted values of )log( ty into fitted values of ty  

and then compare goodness-of-fit criteria across the two equations based on the fitted 

values of ty .  For example, if one chooses 2R as the goodness-of-fit criteria, the model 

with the highest value of 2R  (coefficient of determination) would be the preferred model.  

If the 2R  of the log model is higher, then you could focus on the exponential trend 

smoother.  Otherwise, you can consider the other models.  On the other hand, the damped 
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trend choice would require that there be some curvature in the data and thus that the 

quadratic term in (34) be statistically significant. 

 Distinguishing between the additive and multiplicative models is somewhat more 

problematic given the assumption of fixed seasonality in the DTDS model.  The seasonal 

effects in the multiplicative models are increasing with time.  One way to detect such 

changing seasonality is to apply tests of parameter constancy in the seasonal coefficients 

in (34) or (35) as in the Chow test or recursive Chow test.  See J. Stock and M. Watson 

(Pearson, 2007) Introduction to Econometrics, 2
nd

 edition, pp. 566 – 571 for more 

discussion on this point. 

 

 An Example of the Cost to Exponential Smoothing of Not Correctly 

 Identifying the Salient Characteristics of the Time Series to be Forecast 

  

 To demonstrate the costs to exponential smoothing of not accurately identifying 

the salient characteristics of the time series that is being forecasted, an out-of-sample 

experiment on the Plano Sales Tax Revenue data was conducted whereby the forecasting 

performance of the preferred smoother, the Additive Winters method with trend and 

seasonality, is compared to the three other smoothers discussed above, namely the Simple 

Exponential Smoother (No Trend, No Season), the Linear (Holt) Exponential Smoother 

(Trend, No Season), and the Seasonal Exponential Smoother (No Trend, Season). 

 In conducting this experiment the Plano data was divided into two groups: the in-

sample data spanning the time period February 1990 and ending December 2003 (167 

observations) and the out-of-sample data spanning the time period January 2004 – 

November 2006 (23 observations).  Three forecast horizons were examined, namely, one-

step ahead, three steps ahead, and six steps ahead (h = 1, 3, 6).  The four competing 

models were “rolled” through the out-of-sample data one observation at a time while 

updating the smoothing coefficients each time (i.e. refitting the models after each 

forecast) and then comparing the forecasts with the actual out-of-sample observations 

using the Percent Mean Absolute Error Criterion (PMAE) defined by 

  PMAE = 


M

t t

t

y

e

1

100         (43) 
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where ttt yye ˆ  is the out-of-sample forecast error of a given model and M is the 

number of out-of-sample forecasts produced by a given model. 

 The results of this out-of-sample forecasting experiment are reproduced in the 

table below.   

Out-of- Sample Forecasting Performances 

Of Various Exponential Smoothing Methods 

At Horizons (h) 1, 3, and 6 

And using PMAE as the Measure of Accuracy 

 

TS       NTNS     TNS  NTS  M                h 

 

           4.30            19.87            20.57 4.61             23                1 

 

           3.84            14.76            15.34 4.58                 21                3 

 

           3.50            13.37            13.83            4.88                 18                6 

 

 Simple Exponential Smoothing = NTNS (No Trend, No Seasonality) 

 Seasonal Exponential Smoothing = NTS (No Trend, Seasonality) 

 Double Exponential Smoothing = TNS (Trend, No Seasonality) 

 Additive Winters Smoothing = TS (Trend, Seasonality) 

 

 From this table we can see that ignorance with respect to trend and seasonality in 

the data can be costly to exponential smoothing.  For example, with respect to one-step-

ahead forecasting (h=1), the preferred method (TS) has only a 4.30 PMAE while the 

other methods have larger PMAEs, especially the methods that ignore the seasonality in 

the data (NTNS (PMAE = 19.87) and TNS (PMAE = 20.57)).  Ignoring the seasonality at 

horizon one causes the accuracy of the naïve models NTNS and TNS to have roughly 5 

times less forecasting accuracy relative to the preferred method (TS).  In this particular 

experiment ignorance of trend is not as costly as ignore of seasonality but this might not 

be the case in other data sets where the seasonality is “milder” and the trend is “steeper” 

than in the Plano Sales Tax Revenue data set.  Similar conclusions can be drawn at the 

other horizons h = 3 and h = 6.  
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V. Conclusion 

 

 In summary, when using exponential smoothing models for forecasting, it is very 

important to know the salient characteristics of the time series that one is working with 

(i.e. trend and seasonality among other characteristics) before making a choice of 

exponential smoother.  The better the diagnosis of the salient characteristics of the time 

series, the more accurate the exponential smoothing forecasts are likely to be.  Of course, 

if there is more time to build forecasting models for a few time series of special 

importance, one might forego the somewhat mechanical smoothing models and build 

general Box-Jenkins models for forecasting the series.  Since the above smoothing 

models are special cases of Box-Jenkins models, one is likely to gain forecasting 

accuracy by building a more general Box-Jenkins model rather than relying on “special 

case” Box-Jenkins models that are likely to be too restrictive in nature. 

         



 22 

REFERENCES 

 

Archibald, B.C. (1990), “Parameter Space of the Holt-Winters Model,” International 

Journal of Forecasting, 6, 199-209. 

Bowerman, B.L. and O’Connell, R.T. (1979), Time Series and Forecasting: An Applied 

Approach, Duxbury Press: North Scituate, Mass. 

Brown, R.G. (1959), Statistical Forecasting for Inventory Control, McGraw-Hill: New 

York, NY. 

Brown, R.G. (1962), Smoothing, Forecasting and Prediction of Discrete Time Series, 

Prentice-Hall: New Jersey.   

Chatfield, C. (1978), “The Holt-Winters Forecasting Procedure,” Applied Statistics, 27, 

264-279. 

Corradi, Valentina and Norman R. Swanson (2005), “Predictive Density Evaluation,” 

University of London Working paper to appear in the Handbook of Economic 

Forecasting (forthcoming).   

Gardner, E.S., Jr. (1985), “Exponential Smoothing: the State of the Art,” Journal of 

Forecasting, 4, 1-38. 

Hamilton, James (1994), Time Series Analysis, Princeton University Press: Princeton, 

NJ. 

Harvey, A.C. (1989), Forecasting, Structural Time Series Models and the Kalman Filter 

(Cambridge University Press: Cambridge, UK).   

Holt, C.C. et al., (1960), Planning Production, Inventories, and Work Force, Prentice-

Hall: Englewood Cliffs, Chapter 14. 

McKenzie, Ed (1984), “General Exponential Smoothing and the Equivalent ARMA 

Process,” Journal of Forecasting, 3, 333-344. 

Makridakis, S. and Hibon, M. (1979), “Accuracy of Forecasting: An Empirical 

Investigation (with discussion)”, Journal of the Royal Statistical Society (A), 142, 97-

145. 

Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., 

Newton, J., Parzen, R. and Winkler, R. (1982), “The Accuracy of Extrapolation (Time 



 23 

Series) Methods: Results of a Forecasting Competition,” Journal of Forecasting, 1, 111 – 

153.   

SAS Institute Inc., SAS/ETS Software: Time Series Forecasting System, Version 6, First 

Edition, Cary, NC: SAS Institute Inc., 1995, pp. 225 – 234. 

Sweet, A.L. (1985), “Computing the Variance of the Forecast Error for the Holt-Winters 

Seasonal Models,” Journal of Forecasting, 4, 235-243. 

Stock, J. and M. Watson (2007), Introduction to Econometrics, 2
nd

 edition (Pearson: NY),   

566 – 571.  

Yar, M. and Chatfield, C. (1990), “Prediction Intervals for the Holt-Winters Seasonal 

Models,” Journal of Forecasting, 4, 235-243. 

 


