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I. Introduction and Motivation of UCM 

 

 In this section we are going to be presenting the Unobserved Components time 

series model.  This model was first introduced to the econometrics and statistics fields by 

A.C. Harvey (1989) in his book Forecasting, Structural Time Series Models and the 

Kalman Filter (Cambridge University Press).  Here we will introduce the model as an 

“organizing model” for the discussion of time series modeling in general but also to 

compare and contrast the UCM model with other time series models to come, namely, the 

very basic Deterministic trend / Deterministic seasonal model to be discussed next, and 

the exponential smoothing and Box-Jenkins models that follow.   

 

 The UCM can be considered to be a multiple regression model with time-varying 

coefficients.  It is based on the principles that (i) it is useful to view time series as being 

decomposable into trend, seasonal, and cycle components and (ii) time series models that 

give equal weight to both near and far distant observations (as in the deterministic trend 

model to be discussed later) are often not very useful.  With respect to point (i) inefficient 

and inaccurate forecasting is likely to arise for anyone who ignores the salient 

characteristics of the time series to be forecast. For example, if one builds a time series 

model that has no allowance for seasonal variation yet the time series has significant 

seasonal variation in it, then the forecasting accuracy of such a naïve model is likely to be 

poor.  With respect to point (ii), in many time series the adjacent observations are more 

closely correlated with each other than observations that are far apart.  As a result time 

series models that are “local” in nature and weight recent observations more than 

observations in the far past, tend to predict better when applied to economic and business 

time series than models that treat time series data “globally” as in the deterministic time 

trend model.  Apart from the deterministic time trend model that treats all observations as 

equally important when constructing forecasts, the other models that we study (UCM, 

exponential smoothing, and Box-Jenkins models) are local in nature in that the more 

distant an observation is from the point of forecast, the less weight the distant observation 

carries in determining forecasts of the time series in question.   

 

 Notation of UCM 

 

 The fully specified Unobserved Components Model is written as  

 

                                                 
1
 This presentation relies heavily on the material contained in the SAS HELP file under the keyword “Proc 

UCM”. 
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In equation (1) ty  represents the time series to be modeled and forecast, t  the trend 

component, t  the seasonal component, t the cyclical component, tr  the 

autoregressive component, and t  the irregular component.  All of these components 

are assumed to be unobserved and must be estimated given the time series data on ty and 

jtx , hence the title unobserved components model.  In addition, (1) allows the inclusion 

of the autoregressive regression terms 
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 , the former representing the “momentum” of the time series as it relates to its 

past observations and the latter representing the causal factors that one is willing to 

suppose affects the time series in question.   

 

 In traditional time series analysis it is often assumed that a time series ty can be 

additively decomposed into four components, namely, trend, season, cycle, and 

irregular components as in  

 

   ttttt ICSTy          (2) 

 

where tT  represents the trend in ty  at time t, tS the seasonal effect at time t, tC the 

cyclical effect at time t and tI the irregular effect at time t.  Obviously, the UCM model 

(1) does employ this decomposition but, in addition, allows unobserved autoregressive  

effects and explanatory regression effects making it a very powerful model indeed.  One 

of the major advantages of the UCM (1) is its interpretability and, as we will see, PROC 

UCM in SAS provides some very nice graphical representations of this decomposition. 

 

 To demonstrate this decomposition, consider the following characterizations of 

trend, cycle, seasonal, and irregular components that have been encoded in a SAS 

program entitled Decomposition.sas.  

 

  tTt *0.4100   (deterministic trend: intercept = 100, slope = 4) 

  )10/*1416.3cos(*50 tCt    (deterministic cycle: amplitude = 50, 

                                                                           Period = 20 months, phase = 0) 

  tS  = {fixed seasonal effects: -50, -25, 25, -25, -50, 50, 75, 50, 5, -25, -50, 

       20} 

                                 (i.e. Jan. effect = -50, Feb. effect = -25, … , Dec. effect = 20) 

  )100,0(NIIDI t   

 

Therefore, the actual population model can be written as  
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  ttttt ISCTy   

       = 2*251*50)31416.0cos(500.4100 dumdumtt   

   6*505*504*253*25 dumdumdumdum   

   10*259*58*507*75 dumdumdumdum   

   tdumdum  12*2011*50 . 

 

The above seasonal dummies are defined dumi  = 1 if the observation is in the i-th month 

and zero otherwise.  Obviously the intercept of the month varies by month.  For example, 

the intercept for all of the January months is (100 – 50 = 50), the intercept for the 

February months is (100 – 25 = 75), etc.  The irregular component is represented by the 

unobserved error t  which is normally and independently distributed with mean zero and 

variance of 100.     

 

 Each of these components is plotted in order in the following figures below: 

 

Figure 1 
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Figure 2 

 
 

Figure 3 
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Figure 4 

 

 
 

 In the following graphs we sum these components up as is intended in the additive 

decomposition (2) 

.Figure 5 
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Figure 6 

 
 

Figure 7 
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 And in Figure 8 below we have the representation of the fitted model obtained by 

Proc Nlin (a Nonlinear Least Squares procedure). 

 

Figure 8 

 
 

 

The fitted model is  

 3*21.752*36.21)0314.03140.0cos(76.5098.374.51 dumdumttyt   

 7*3.1206*26.935*21.24*99.23 dumdumdumdum   

 11*58.010*69.249*16.568*6.100 dumdumdumdum   

 tdum ̂12*97.69   

 

which closely matches the population parameters.  Obviously the January intercept is 

estimated as 51.74, the February intercept is 51.74 + 21.36 = 73.1, etc.  The slope of the 

trend is 3.98 while the amplitude of the cycle is 50.76, the phase is -0.0314, and the 

period is 01.203140.0/1416.3*2/2  wp  months. 

 

 In the spirit of the above empirical model, we now move to cover the parts of the 

UCM (1) in more detail.   
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II. Modeling the Trend    

 

 (a) Random Walk (without drift) Model for Trend 

 

 When the trend component is modeled as  

 

   ttt   1    ,     ),0( 2

 NIIDt     (3) 

 

where )",0(" 2

NIID  reads “distributed as a normal, independently and identically 

distributed random variable, it referred to as the Random Walk (RW) trend model in 

the UCM.  This model is especially appropriate for time series data that are flat and 

slow-turning.   Notice if 02  then 1 tt  for all t and therefore  0t constant.  

In this special case, the data are expected to revert back to the mean 0  in fairly short 

order.  A simulation of the Random Walk trend model is presented in the following graph  

as produced by the SAS program Stochastic Level Model.sas with 00  and 0.12  .  

 

Figure 9 

 
 

Notice that the data, as expected, is flat and slow-turning.  Just as a point of note, we 

will see later that when a time series has a random walk level (3), it can be thought of 
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as following an ARIMA(0,1,1) Box Jenkins model hence the “loose” relationship 

between Box-Jenkins models and this simple UCM model we previously alluded to. 

 

 In contrast, when we set 02   we have a constant mean.  If the time series is 

then of the form of tty   0  where 00   and )1,0(NIIDt   we have the 

following graph that has strong mean reversion in it.   

 

Figure 10 

 
 

 (b) Locally Linear Trend (LLT) Model  

 

 In this model the trend is characterized by the following level and slope equations 

 

  tttt    11 ,  ),0( 2

 NIIDt   (level)   (4) 

 

  ttt   1 ,   ),0( 2

 NIIDt  .               (slope)             (5) 

 

Here t  represents the stochastic level of the trend while t  represents the stochastic 

slope of the trend.  Furthermore, it is assumed that t  and t  are independent of each 

other.  In the presence of both stochastic level and stochastic slope the data need not have 

a linear trend but can have a trend with the curvature (slope) of the data slowly evolving 
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as well.  See Figure 11 below that has been generated by the SAS program Stochastic 

Level _ Stochastic Slope.sas with ,,1,0 22

0    and 42  .  Again, as a point of 

note, we will see later that when a time series has a stochastic level and stochastic 

slope making up the trend as in (4) and (5), it can be thought of as following an 

ARIMA(0,2,2) Box Jenkins model and hence, again, the “loose” relationship between 

Box-Jenkins models and this UCM model we previously alluded to. 

 

 If 02  then essentially you have a random walk with fixed drift, 0 , which 

would be appropriate for data that has a linear appearing trend.  See Figure 12 below that 

has been generated by the SAS program Stochastic Level _ Fixed Slope.sas with 

1622     and by setting the slope error variance to zero ( 02  ) and setting 

20  , we get the fixed slope of 2.0.  Notice the data is now slowly turning around a 

fixed trend (drift) of 2.0.  If, in addition, 00   then we are back to the Random Walk 

without drift model of trend in (3) above and depicted in Figure 9 above.  If both error 

variances are equal to zero ( 022    ), the resulting model becomes the deterministic 

linear time trend model: tt ty   00 .   See Figure 13 below that depicts a 

deterministic trend time series generated by the SAS program Deterministic Trend.sas 

where the trend equation is given by tt ty  *4100  with ).400,0(NIIDt   In this 

latter case the data is expected to revert fairly quickly back to the deterministic trend.  In 

the example to be examined later Proc UCM in SAS provides some very useful 

diagnostics for determining whether components are stochastic or non-stochastic, the 

significance of the components, and the goodness-of-fit of proposed UCM models.  

 

Figure 11 
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Figure 12 

 
 

Figure 13 
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Thus we can see that the Stochastic Level _ Stochastic Slope model can be specialized in 

several different ways as represented by Figures 9 – 13 simply by setting some of the 

variances of the level and slope components ( 2

  and 2

 ) equal to zero.  In fact, Proc 

UCM in SAS provides t-tests of the significance of these error variances and based upon 

them the level and slope components can be modeled as being fixed as compared to being 

stochastic.  See the below example for an illustration of these tests. 

 

III. Modeling the Cycle 

 

 Proc UCM provides two basic ways of modeling the unobserved cyclical 

component, t : a deterministic (non-stochastic) trigonometric cycle (or cycles) and a 

stochastic trigonometric cycle.  We will discuss these two representations in turn.   

 

 (a) A Deterministic Cyclical Model 

 

 Let the deterministic cycle with frequency  ,  0 , be written as  

 

  )sin()cos( ttt     .      (6) 

 

If t is observed continuously, t  is a periodic function with period  /2 , amplitude 

2/122 )(   , and phase )/(tan 1  .  If t  is measured only at integer values of t, then 

t  is not exactly periodic unless )/2( kj  for some integers j and k.  Unfortunately, 

the cycles in economic and business time series data are scarcely ever as systematic as 

would be depicted in any one deterministic periodic function (6).  However, from Fourier 

analysis we know that fairly complex cyclical data can be written as a sum of a finite 

number of sinusoidals like (6).   In Proc UCM in SAS one can specify more than one 

such sinusoidal for the purpose of capturing some of the more complex cyclical patterns 

in economic and business time series data.   

 

 (b) A Stochastic Cyclical Model  
 

 As an alternative to specifying one or more of the deterministic cycles (6) and 

introducing a multitude of  ,  , and   parameters, one can specify a stochastic cyclical 

model as in  
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where 10    is a damping factor and the disturbances t  and *

tv are independently 

distributed as ),0( 2

N random variables.  This model can capture quite complex cyclical 

patterns in economic and business time series without introducing an abundance of 
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parameters.  If 1 , t  has a stationary distribution with mean zero and 

variance )1/( 22   .  If 1 , t  is non-stationary.  Of course if 02  we revert to 

the deterministic cyclical model (6).  

 

IV. Modeling a Seasonal Effect 

 

 Most economic and business time series exhibit seasonality.  Assume that we are 

analyzing monthly time series data.  A rough definition of seasonality can be expressed 

as follows: For any given month, deviations from trend tend to be of the same sign from 

one year to the next.  For example, December toy sales tend to be above the secular trend 

of toy sales because of the holiday buying habits of consumers.  In contrast, January toy 

sales tend to be below the secular trend because of the lack of a child-oriented holiday in 

January.   The same can be said for seasonal quarterly data and the similar year-over-year 

variation in the data compared to the secular trend in the data.  One model for such 

seasonal variation is called the Stochastic Dummy Variable Seasonal model discussed 

below.    

 

 (a) Stochastic Dummy Variable Seasonal Model    

 

   Let there be s seasons during the year, s = 12 for monthly data, s = 4 for quarterly 

data, and s = 2 for bi-annual data.  Consider the following model for the seasonal effect  

t  at time t: 

 

  t

s

i

it  






1

0

   ,      ),0( 2

 NIIDt  .    (8) 

 

In this model the sum of the seasonal effects has a zero mean although their stochastic 

nature allows them to evolve either slowly over time (when 2

 is small) or quickly over 

time (when 2

 is large). 

 

(b) Deterministic Dummy Variable Seasonal Model 

 

  In the special case where 02   in (8), we have the following the so-called 

Deterministic Dummy Variable Seasonal model.  In this model the seasonal effects 

s ,,, 21  are fixed and do not vary over time in contrast to the stochastic specification 

in (8). In this case a test of the absence of seasonality in the time series data being 

analyzed amounts to testing the null hypothesis 0: 1210  sH   , where the 

sum constraint 



s

i

i

1

0 implies that 0s as well. 

 

  Proc UCM in SAS also accommodates a trigonometric form of seasonality much 

like the trigonometric cyclical form previously specified in (7).  We do not pursue this 
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model further.  For more information on this specification, one can consult Harvey 

(1989) or the Procedure documentation of Proc UCM in SAS HELP.   

 

 

V. Modeling Additional Effects 

 

(a) Modeling an Unobserved Autoregressive Component 

 

 Rather than modeling the cyclical nature of a time series via either the 

deterministic cyclical model (6) or the stochastic cyclical model (7), one can use the 

rather straight-forward specification  

 

  ttt rr   1  ,    ),0( 2

 NIIDt       (9) 

 

where the unobserved autoregressive component tr  follows a first-order autoregression 

with 11   .  This autoregression, despite its simplicity, can capture many of the 

movements in time series data that represent business cycle inertia and that are present in 

many business and economic time series.   

 

(b) Including Regression Terms 

 

 Moving beyond univariate time series modeling, one can specify regression terms 

for adding additional explanatory power:  

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 .  The inputs jtx  are 

intended to provide economic and business “causes and effects” that might help one in 

deriving more accurate forecasts of ty .  We will study the possibility of such causal 

variables when we turn to modeling multivariate time series later in this course. 

 

VI. Obtaining the Estimates of the Unobservable Components and Other Statistics – 

the Kalman Filter  

 

 It is well known in the advanced time series literature that Unobservable 

Components models can be thought of as being special cases of more general models 

called Gaussian State Space Models (GSSM).  Once the specific Unobservable 

Components model has been cast in State Space form the various unobserved 

components can be estimated using something called the Kalman Filter.  We will leave 

the detailed explanation of these matters to the references Harvey (1989), Durbin and 

Koopman (2001), and the SAS HELP for Proc UCM.  Needless to say, Proc UCM in 

SAS produces, via the Kalman filter, graphs of the various unobserved components as a 

function of time.  These graphs contain either the “filtered” estimates of the unobserved 

components over time or the “smoothed” estimates of the unobserved components.  In the 

filtered case the estimates are obtained recursively as one-step-ahead forecasts of the 

components whereas the smoothed estimates are derived using the entire time series and 

a smoothing of the filtered estimates.  These graphs are very informative.  As in the 

additive decomposition of (2), a time series observation at time t can then be additively 
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decomposed into the estimated trend component, t̂ , estimated seasonal component, t̂ , 

estimated cyclical component, t̂ , and estimated irregular component, t̂ , represented in 

the graphs produced by Proc UCM.  Therefore, at time t an observation on y can be 

additively decomposed as in ttttty  ˆˆˆˆ   assuming the presence of unobserved 

components for trend, season, cycle, and irregular effects.  These estimated unobserved 

component graphs will be presented in our example below.  Other statistics such as 

estimated error variances of the unobserved components, t-statistics of the significance of 

the error variances, Chi-square statistics for gauging the significance of the various 

components, and goodness-of-fit statistics are also produced by Proc UCM using the 

Kalman filter and are useful for building a UCM model that fits the data well.               

 

VII. Getting Started in Building a UCM Model – the BSM model 

 

 One approach for building a good UCM for a given time series is to build a 

“Basic” structural model of the time series and then add to the Basic model as necessary.  

In this spirit, Harvey (1989) has defined the following UCM as the Basic Structural 

model (BSM): 

 

  tttty          (10)  

where 

  tttt    11  

 

ttt   1 . 

 

Thus, the BSM consists of the locally linear trend (LLT) model for trend and a seasonal 

component of either the stochastic dummy variable form or the trigonometric form (not 

discussed here).   

 

 The syntax for the BSM model in SAS is as follows: 

 

Proc UCM; 

  model y; 

      irregular; 

      level; 

      slope; 

      season length = s type = dummy; 

 

The first line of the SAS code indicates the move to a procedure step in the SAS program 

using the procedure UCM.  The dependent variable to be modeled is y and the 

Unobservable Components model is to have an irregular component, a level and slope 

component in the trend, and the stochastic dummy variable seasonal specification (8) is 

chosen for the seasonal component.  Of course, in the above, s is replaced with 12 if the 

data is monthly, 4 if the data is quarterly, and 2 if the data is bi-annual in nature.  If this 

model fits the time series data at hand well, then additional components can be added by 

way of cyclical and autoregressive unobservable components and adding regression 
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terms.  In contrast, if the data does not contain a stochastic trend and or if the data does 

not have a seasonal component, the BSM can be correspondingly simplified. 

 

VIII. An Example – the Box-Jenkins Airline Data      

   

 A very frequently used time series to demonstrate the nature of a time series with 

linear trend and seasonality is the so-called Airline Passenger data originally published in 

Box and Jenkins (1970).  This series is a monthly series involving the number of airline 

passengers that traveled per month over the time period January 1949 through December 

1960.  As can be seen from the SAS graph below, the data has a linear trend in it and has 

reoccurring seasonal deviations from trend.  These SAS graphs have been generated in a 

SAS program called BSM.sas that can be found in the appendix to this document. 

 

      
   

  

 In order to stabilize the variability of the data around the trend in the latter years, 

Box and Jenkins (1970) recommended taking the natural logarithms of the data and 

analyzing them instead of the original series. This transformation of the data is plotted in 

the graph below.  
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Later in this course we will study statistical methods for determining the desirability of 

this transformation.  The statistical methods are contained in the SAS macro called 

%logtest.  At any rate we are going to take the logarithmic form to be the preferred form 

to analyze this data in.   

  

The BSM Model of the Airline Passenger Data 

 

Now let us turn to the analysis of the Airline data vis-à-vis the SAS program 

BSM.sas contained in the appendix.  First consider the output produced by the following 

SAS code that fits a BSM to the Airline data.   

 
title 'BSM: stochastic level, stochastic slope, stochastic dummy 

seasonal'; 

 

 proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

        estimate plot=(residual normal acf); 

        run; 
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The first line of this SAS Procedure step simply provides SAS with a title for the output 

to be produced by this part of the BSM.sas program.  The ID for the plots is “date” and 

the frequency of the data is monthly.  The model statement tells SAS that “logpass” is the 

time series to be modeled.  The program then specifies the trend to have both the level 

and slope unobservable components and a stochastic dummy variable seasonal.  When 

plotting the level, slope, and seasonal components we want the smoothed versions.  

Finally, when estimating the model the program asks SAS to provide us with a plot of the 

residuals, a histogram of the residuals with a overlaid plot of the normal distribution 

implied by the variance of the residuals, and a plot of the autocorrelation function (acf) of 

the residuals with 95% confidence intervals of the various autocorrelations.  We will 

discuss the details of the autocorrelation function later in this course.   

 

 So the first major output we get is the following: 

 

BSM: stochastic level, stochastic slope, stochastic dummy seasonal 
 

The UCM Procedure 
 

Input Data Set 

Name WORK.AIRLINE 

Time ID Variable date 

 
 
 

Estimation Span Summary 

Variable Type First Obs Last Obs NObs NMiss Min Max Mean 
Standard 
Deviation 

logpass Dependent JAN1949 DEC1960 144 0 4.64439 6.43294 5.54218 0.44146 

 
 

So the data set we inputted wound up in the “work” subdirectory of SAS and the time ID 

variable is “date”.  SAS also recognizes that “logpass” is the dependent variable to be 

analyzed by PROC UCM and its time span is given along with minimum and maximum 

values and the like. 

 

Skipping through some of the output that Proc UCM produces, the next output of 

interest is the likelihood-based goodness-of-fit measures of the fitted model.  

 

Likelihood Based Fit Statistics 

Full Log-Likelihood 217.42040 

Diffuse Part of Log-Likelihood -4.96981 

Normalized Residual Sum of Squares 131.00000 

Akaike Information Criterion -400.84079 
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Bayesian Information Criterion -350.35397 

Number of non-missing observations used for computing the log-likelihood = 144 

 

 

The full likelihood function is the function that Procedure UCM maximizes in getting the 

parameters (error variances) and unobserved components of the model.  Its fitted value is 

217.42040.  As the next two items, “Diffuse Part of Log-Likelihood” and “Normalized 

Residual Sum of Squares” are not necessary for our discussion, we will leave their 

definitions for the reader to read in SAS HELP and its detailed description of Proc UCM.  

The next two goodness-of-fit statistics, Akaike Information Criterion (AIC) and Bayesian 

Information Criterion (BIC), are defined as follows: 

 

  AIC = (-2L + 2k)/T        (11) 

 

  BIC = (-2L + k*log(T))/ T      (12)       

 

where L denotes the full likelihood value of the fitted model, k is the number of free 

parameters that are estimated in the chosen model, and T is the number of observations 

used to estimate the candidate model.  These goodness-of-fit criteria are useful for 

discriminating among various competing UCM models.  The specification that 

minimizes these two measures is to be recommended over its competitors. 

 

 Now let’s consider some additional output produced by the above SAS program.   

 

Likelihood Optimization Algorithm Converged in 19 Iterations. 

 
 

Final Estimates of the Free Parameters 

Component Parameter Estimate 
Approx 

Std Error 
t Value 

Approx 
Pr > |t| 

Irregular Error Variance 0.00012951 0.0001294 1.00 0.3167 

Level Error Variance 0.00069945 0.0001903 3.67 0.0002 

Slope Error Variance 2.64778E-12 1.24107E-9 0.00 0.9983 

Season Error Variance 0.00006413 0.00004383 1.46 0.1435 

 
 

Significance Analysis of Components 
(Based on the Final State) 

Component DF Chi-Square Pr > ChiSq 

Irregular 1 0.05 0.8320 

Level 1 132433 <.0001 

Slope 1 17.86 <.0001 
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Season 11 772.21 <.0001 

 
 

Summary of Seasons 

Name Type Season Length Error Variance 

Season DUMMY 12 0.00006413 

 

   

 In the BSM you will recall that the error variances of the irregular, level, slope, 

and season components are, respectively, 2

 , 2

 , 2

 , and 2

  of the irregular, level, 

slope, and stochastic dummy variable seasonal components, respectively.  These are the 

“free parameters” of the model and their estimates are reported in the table labeled “Final 

Estimates of the Free Parameters” and are determined by considering all of the data that 

is available on the dependent variable logpass.  These estimates and their corresponding 

t-values allow one to infer whether the corresponding component is non-stochastic (the 

null hypothesis) or is stochastic (the alternative hypothesis).  The results reported here 

indicate that the slope component of the trend may be suitably modeled as being non-

stochatic (fixed) rather than stochastic.  This seems logical given the linear shape (as 

compared to having some curvature) of the logpass data.  In the subsequent model we 

examine here, labeled BSM2, we will take this suggestion to heart.  That is, we will 

compare the BSM model with stochastic slope with BSM2 with fixed slope.  The other 

error variances range from middling significance to highly significant so we assume, for 

now, that these components are best modeled as being stochastic. 

   

 The next important diagnostic output is contained in the Table labeled 

“Significance Analysis of Components (Based on the Final State)”.  Here the Chi-square 

statistics test the null hypothesis that the given component is not significant while the 

alternative hypothesis implies the opposite.  Given the output of the table, one concludes 

that all three components analyzed (level, slope, and season) appear to be significant as 

determined at the final state (observation) of the Kalman filter.  The two-sided p-values 

of the components are less than the conventional levels of significance.  (We retain the 

irregular component of any UCM model as a matter of principle.)   The last table of 

course reports that the type of seasonal component chosen is the stochastic dummy 

variable type. 

 

The BSM Model with Fixed Slope 

 

As suggested by the results reported in the “Final Estimates of the Free 

Parameters” Table above, we try the BSM Model with Fixed Slope as invoked by the 

following Proc UCM statement in SAS: 

 
title1 'BSM2: stochastic level, fixed slope, stochastic dummy 

seasonal,'; 

title2 'stochastic cycle'; 

 

  proc ucm data = airline; 
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        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

  estimate plot=(residual normal acf); 

        run; 

 

This procedure step is just like the previous one except the slope statement now  includes 

“var = 0 and noest” which specifies that the error variance for the slope component is to 

be set to zero and not estimated implying that the slope coefficient in the trend is to be 

estimated as a fixed parameter.   The major diagnostic tables for this model are 

reproduced below. 

 
 
 
 
 
 
 
 
 
 
 
 

BSM2: stochastic level, fixed slope, stochastic dummy seasonal 

 

 

Likelihood Based Fit Statistics 

Full Log-Likelihood 217.42040 

Diffuse Part of Log-Likelihood -4.96981 

Normalized Residual Sum of Squares 130.99998 

Akaike Information Criterion -402.84080 

Bayesian Information Criterion -355.32379 

Number of non-missing observations used for computing the log-likelihood = 144 

 

Likelihood Optimization Algorithm Converged in 19 Iterations. 

 

Final Estimates of the Free Parameters 
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Component Parameter Estimate 
Approx 

Std Error 
t Value 

Approx 
Pr > |t| 

Irregular Error Variance 0.00012951 0.0001294 1.00 0.3167 

Level Error Variance 0.00069945 0.0001903 3.67 0.0002 

Season Error Variance 0.00006413 0.00004383 1.46 0.1435 

 

Significance Analysis of Components 
(Based on the Final State) 

Component DF Chi-Square Pr > ChiSq 

Irregular 1 0.05 0.8320 

Level 1 132433 <.0001 

Slope 1 17.86 <.0001 

Season 11 772.21 <.0001 

 

   

 Again all three of the components (level, fixed slope, and season) are statistically 

significant.  Moreover the fit of the BSM2 model is better than the fit of the initial BSM 

model because the BSM2 model’s goodness-of-fit measures (AIC = -402.84 and BIC = 

-355.32) are smaller than the corresponding goodness-of-fit measures for the BSM model 

(AIC = -400.84 and BIC = -350.350.   We have achieved an improvement in our original 

specification in going from a stochastic slope specification to a fixed slope specification 

in the trend.      

 

 Should the Seasonal Component be modeled as stochastic or non-stochastic 

(fixed) over time? 

 

 In the BSM2 Table labeled “Final Estimates of the Free Parameters” you will 

notice that the “season” error component is not highly significant (p = 0.1435).  Thus one 

might question whether or not we should specify, not only the slope coefficient, but also 

the seasonal coefficients (there are 11 of them) to be non-stochastic (fixed).  We consider 

this issue by entertaining the BSM3 model which is estimated by the following Proc 

UCM statements: 

 
title 'BSM3: stochastic level, fixed slope, non-stochastic dummy 

seasonal'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy var = 0 noest plot=smooth; 

        estimate plot=(residual normal acf); 

        run; 
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Here you will notice that the “season” statement now has the additional specification “var 

= 0 noest” which specifies that the dummy variable seasonal component should now be 

treated as fixed and estimated accordingly.  The only detail we provide from the output 

produced by this model is the following goodness-of-fit table. 

 
 
 

BSM3: stochastic level, fixed slope, non-stochastic dummy seasonal 

  

Likelihood Based Fit Statistics 

Full Log-Likelihood 217.42040 

Diffuse Part of Log-Likelihood -4.96981 

Normalized Residual Sum of Squares 131.00000 

Akaike Information Criterion -394.92959 

Bayesian Information Criterion -350.38239 

Number of non-missing observations used for computing the log-likelihood = 144 

 

   

In comparing the AIC = -394.93 and BIC = -350.38 produced by this model with the AIC 

and BIC measures when the seasonal component was treated as being stochastic (AIC = 

-402.84 and BIC = -355.32) we see that the stochastic specification is to be preferred.  

Evidently, the seasonal component in the Airline passenger data evolved slightly over 

time (as we will see in a graph of the seasonal component presented in the final model we 

choose later). 

 

 Should a Cyclical Component be added to the model? 

 

 There are, of course, several different possible specifications of a cyclical 

component for an UCM.  Here we try a stochastic cyclical model of the form (7) above.  

The SAS code used to implement this model is as listed below.  

 
title1 'BSM4: stochastic level, fixed slope, stochastic dummy 

seasonal,'; 

title2 'one stochastic cycle'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

   cycle plot=smooth;  

   estimate plot=(residual normal acf); 
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        run; 

 

Notice that the “cycle” statement has been added to the previous code resulting in a 

model we label as BSM4.  The essential diagnostic tables for this model are presented 

below.  

 

BSM4: stochastic level, fixed slope, stochastic dummy seasonal, 

one stochastic cycle 

 

Likelihood Based Fit Statistics 

Full Log-Likelihood 228.29612 

Diffuse Part of Log-Likelihood -4.96981 

Normalized Residual Sum of Squares 131.00000 

Akaike Information Criterion -418.59223 

Bayesian Information Criterion -362.16578 

Number of non-missing observations used for computing the log-likelihood = 144 

 

 

 

 

Likelihood Optimization Algorithm Converged in 43 Iterations. 

 
 

Final Estimates of the Free Parameters 

Component Parameter Estimate 
Approx 

Std Error 
t Value 

Approx 
Pr > |t| 

Irregular Error Variance 0.00032039 0.0001206 2.66 0.0079 

Level Error Variance 0.00028734 0.0001017 2.83 0.0047 

Season Error Variance 0.00005436 0.00003033 1.79 0.0731 

Cycle Damping Factor 1.00000 3.88275E-6 257549 <.0001 

Cycle Period 12.07340 0.21719 55.59 <.0001 

Cycle Error Variance 1.085318E-8 6.41319E-8 0.17 0.8656 

      

Significance Analysis of Components 
(Based on the Final State) 

Component DF Chi-Square Pr > ChiSq 

Irregular 1 0.00 0.9490 

Level 1 125871 <.0001 
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Slope 1 46.93 <.0001 

Cycle 2 38.12 <.0001 

Season 11 356.74 <.0001 

 

From these tables we see that included the cycle in our model has helped in that we have 

a better fit of our data (AIC = -418.59 and BIC = -362.166).  Moreover, the seasonal 

component is highly significant although from the t-statistic on the cycle error variance it 

is not clear whether we should be modeling our cycle to be stochastic as in (7) or non-

stochastic as in (6).  

 

 Should there be one cycle or two cycles in the Cyclical Component?   

 

 First, before addressing whether our cycle should be stochastic or non-stochastic, 

let us see if adding a second cycle (in the spirit of Fourier analysis) in explaining the 

cyclical component would be useful.  The SAS code that allows us to investigate this 

issue is contained below. 

 
title1 'BSM5: stochastic level, fixed slope, stochastic dummy 

seasonal,'; 

title2 'two stochastic cycles'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

  cycle plot=smooth; 

  cycle plot=smooth;  

  estimate plot=(residual normal acf); 

        run; 

 

Here a second “cycle” statement has been added to the SAS code. This model is referred 

to as the BSM5 model.  The relevant output for considering the second cycle is provided 

below. 

 

BSM5: stochastic level, fixed slope, stochastic dummy seasonal, 

two stochastic cycles 

 

Likelihood Based Fit Statistics 

Full Log-Likelihood 228.29612 

Diffuse Part of Log-Likelihood -4.96981 

Normalized Residual Sum of Squares 131.00000 

Akaike Information Criterion -413.92702 
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Bayesian Information Criterion -348.59113 

Number of non-missing observations used for computing the log-likelihood = 144 

 

Likelihood Optimization Algorithm Converged in 42 Iterations. 

 
 

Final Estimates of the Free Parameters 

Component Parameter Estimate 
Approx 

Std Error 
t Value 

Approx 
Pr > |t| 

Irregular Error Variance 0.00036207 0.0001257 2.88 0.0040 

Level Error Variance 0.00022676 0.00009692 2.34 0.0193 

Season Error Variance 0.00005395 0.00002949 1.83 0.0673 

Cycle_1 Damping Factor 1.00000 4.23693E-6 236020 <.0001 

Cycle_1 Period 12.07678 0.21534 56.08 <.0001 

Cycle_1 Error Variance 9.699839E-9 5.43887E-8 0.18 0.8585 

Cycle_2 Damping Factor 1.00000 0.0001823 5486.93 <.0001 

Cycle_2 Period 50.47848 6.27949 8.04 <.0001 

Cycle_2 Error Variance 1.889762E-9 2.90126E-9 0.65 0.5148 

 
 
   

Significance Analysis of Components 
(Based on the Final State) 

Component DF Chi-Square Pr > ChiSq 

Irregular 1 0.00 0.9601 

Level 1 89818.2 <.0001 

Slope 1 57.39 <.0001 

Cycle_1 2 41.97 <.0001 

Cycle_2 2 3.95 0.1389 

 

 

 
 As we can see from the significance analysis of the components, the second cycle 

is not significant at conventional levels (p=0.1389).  Moreover, the goodness-of-fit of the 

model has deteriorated somewhat (AIC = -413.93, BIC = -348.59) with the addition of 

the second cycle. 
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 Is the Cyclical Component Stochastic or Non-Stochastic? 

 

 Now that we have settled on one cycle for the cyclical component instead of two, 

let us turn to the issue of whether that one cycle should be modeled as being stochastic or 

non-stochastic.  The SAS code that addresses this issue is presented below.  The model 

with the non-stochastic cycle is labeled the BSM6 model. 

 
title1 'BSM6: stochastic level, fixed slope, stochastic dummy 

seasonal,'; 

title2 'non-stochastic cycle'; 

 

 proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

   cycle noest=variance var = 0 plot=smooth;  

   estimate plot=(residual normal acf); 

        run; 

   

To make the cycle non-stochastic the code “noest = variance var = 0” has been 

added to the “cycle” statement.  The major result is that the non-stochastic specification 

of the cycle does not result in an improvement in the fit of the data vis-à-vis the AIC and 

BIC measures.  (AIC = -398.84 and –345.38).  Therefore we adopt the stochastic 

specification (7) of the cycle for this data. 

 

Considering an Autoregressive Component as an alternative to the stochastic 

cyclical component   

  

 It has been mentioned that the Autoregressive Unobserved Component (9) might 

be considered as an alternative to the Fourier type of specification for the cycle in time 

series data.  The SAS code that allows us to try out this specification (labeled BSM7) is 

listed below. 

 
title1 'BSM7: stochastic level, fixed slope, stochastic dummy 

seasonal,'; 

title2 'autoregressive component for cycle'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

   autoreg plot=smooth; 

   estimate plot=(residual normal acf); 

        run;  
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 Although the output of this procedure indicates that the autoregressive component 

is statistically significant, it does not improve on the fit of the data (AIC = -403.11, BIC = 

-349.66) vis-à-vis the previous BSM4 model specification.   Therefore, we select the 

BSM4 specification of a stochastic level and fixed slope for the trend, a stochastic 

dummy variable seasonal, and a single stochastic cycle along with the irregular 

component.  A summary of the Goodness-of-Fit values for the various models is 

contained in the following table. 
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Goodness-of-Fits for Various UCMs  

 

* Number of autocorrelations that are outside of their 95% confidence intervals.  

Remember, don’t count the autocorrelation at lag = 0 because it is equal to one by 

definition.  Any number above 3 occurrences would indicate the lack of white noise 

residuals.  

 

Model Description 
Variance 

Components 
AIC BIC 

Residuals 

w. n. * 

BSM 

stochastic level σŋ
2
 > 0 

-400.84 -350.350 2 
stochastic slope σξ

2
 > 0 

stochastic dummy 

season 

σω
2
 > 0 

BSM2 

stochastic level σŋ
2
 > 0 

-402.84 -355.32 2 
fixed slope σξ

2
 = 0 

stochastic dummy 

season 

σω
2
 > 0 

BSM3 

stochastic level σŋ
2
 > 0 

-394.93 -350.38 4 
fixed slope σξ

2
 = 0 

non-stochastic 

dummy season  

σω
2
 = 0 

BSM4 

stochastic level σŋ
2
 > 0 

-418.59 -362.166 1 

fixed slope σξ
2
 = 0 

stochastic dummy 

season 

σω
2
 > 0 

one stochastic cycle σν
2
 > 0 

BSM5 

stochastic level σŋ
2
 > 0 

-413.93 -348.59 2 

fixed slope σξ
2
 = 0 

stochastic dummy 

season 

σω
2
 > 0 

two stochastic 

cycles 

σν1
2
 > 0, σν2

2
 > 0 

BSM6 

stochastic level σŋ
2
 > 0 

-398.84 –345.38 2 

fixed slope σξ
2
 = 0 

stochastic dummy 

season 

σω
2
 > 0 

one non-stochastic 

cycle 

σν
2
 = 0 

BSM7 

stochastic level σŋ
2
 > 0 

-403.11 -349.66 2 

fixed slope σξ
2
 = 0 

stochastic dummy 

season 

σω
2
 > 0 

Autoregressive 

component 

συ
2
 > 0 
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 Further Verification of the BSM4 model 

 

Additional verification of the tentatively chosen BSM4 model can be obtained by 

reviewing the output produced by the statement “estimate plot = (residual normal act)”.  

This statement produces (1) a residual plot of the model (i.e. plot of the irregular 

component), (2) a plot comparing a histogram of the residuals of the model with a 

superimposed normal distribution having the same mean (zero) and variance as the 

residuals themselves, and (3) a plot of the autocorrelation function of the model’s 

residuals with a 95% confidence interval of the autocorrelations under the assumption 

that the residuals are independent of each other.  These 3 plots are reproduced below.  
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 In terms of the “Prediction Errors for logpass” graph, the residuals of the model 

(prediction errors) appear to be varying in an unsystematic way.  That is, there do not 

appear to be “stretches” in the data whereby the residuals have positive runs for a little 

while and then negative runs for a little while, etc.  They seem to be pretty 

unsystematically varying which is indicative of the independence of the residuals over 

time and indicative that there is “nothing systematic left in the data” to be described by 

additional components and parameters that we might entertain adding to our model.    

This is verified in the third graph labeled “Prediction Error Autocorrelations for logpass” 

where all of the autocorrelations at the various lags are inside the blue-shaded 95% 

confidence intervals of zero autocorrelation.  (More about autocorrelations and the 

autocorrelation function later.  The autocorrelation at lag zero is by definition 1.0 so its 

value is not of importance in the graph.)  Finally, the graph labeled “Prediction Errors 

Histogram for logpass” shows the residual (prediction error) histogram pretty closely 

resembling a normal distribution which is also a desirable trait of a good UCM model.  

Therefore, all three graphs support the previous contention that model BSM4 is adequate 

for explaining the variation in the Airline passenger data we set out to model. 

 

 The Component Graphs associated with model BSM4 

 

 In this section we are going to report the component graphs for the BSM4 model.  

They are obtained by applying the Kalman filter and constructing the “smoothed” 

estimates as described previously.  The first graph is the smoothed level component graph 

representing a time plot of t̂  and the forecasts of it 12 periods ahead along with its 95% 

confidence interval.  The second graph is the smoothed slope component graph ( t̂  ) 

which happens to be fixed and estimated to be approximately 0.01.     
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The third and fourth graphs below depict the smoothed seasonal component ( t̂ ) 

and smoothed cyclical component ( t̂ ), respectively, as a function of time.  In all of 

these graphs the blue shading indicates the 95% confidence intervals of the components.  

Also notice that each graph is extended for 12 months beyond the end of the data 
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(December 1960) representing the forecasted values of the components.  Of course these 

forecasted components, once they are added together, form the forecasted values of 

logpass reported below.    

 

 
  

 

 
  

The following three graphs depict the “adding” up of the components of trend, season 

and cycle into the fitted values of the Airline series.  Notice the extension of these series 

into the forecast period.     
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Predicting with model BSM4 

 

The 12 out-of-sample forecasts and their 95% confidence intervals are depicted in 

the graph below in the last UCM procedure step in the BSM.sas program.    
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 The numerical values of the forecasts are produced by the last statements in 

BSM.sas.  Since the interest of the user is more likely to involved obtaining the forecasts 

of the number of passengers per month in the subsequent 12 months as compared to the 

log of the number of passengers expected the SAS statements at the end properly 

transform the log forecasts into the “level” forecasts of passengers (in thousands).  As we 

will see in later discussion, an unbiased forecast of passengers (pass) is obtained by the 

anti-log transformation  

 

 Passf = exp(forecast + 0.5*std**2)     (13) 

 

and the upper and lower 95% confidence limits of passengers forecasted are obtained by 

the transformations  

 

  passlcl = exp(lcl)       (14) 

and  

 

  passucl = exp(ucl).       (15) 

 

In (13) “passf” denotes the desired passenger forecast, exp(.) is the exponential (anti-log) 

function, “forecast’ is log of passenger forecast that is to be transformed, and “std” is the 

standard deviation of the log forecast. In (14) “passlcl” denotes the desired lower 

confidence limit for passengers forecasted and “lcl” is the lower confidence limit for the 

log forecast.  In (15) “passucl” denotes the desired upper confidence limit for passengers 

forecasted and “ucl” denotes the upper confidence limit for the log forecast.    

      

Forecasts produced by BSM4 

 

Obs Obs FORECAST STD LCL UCL passf passlcl passucl 

1 145 6.09666 0.035833 6.02643 6.16689 444.658 414.235 476.703 

2 146 6.04763 0.039551 5.97011 6.12515 423.439 391.548 457.211 

3 147 6.17027 0.043828 6.08437 6.25617 478.775 438.943 521.221 

4 148 6.20533 0.047668 6.11191 6.29876 495.948 451.198 543.899 

5 149 6.24241 0.051027 6.14240 6.34242 514.766 465.169 568.170 

6 150 6.38805 0.053942 6.28233 6.49378 595.564 535.034 661.017 

7 151 6.53967 0.056508 6.42892 6.65042 693.164 619.503 773.111 

8 152 6.54427 0.058839 6.42894 6.65959 696.450 619.518 780.229 

9 153 6.36839 0.061048 6.24874 6.48804 584.206 517.360 657.236 

10 154 6.24796 0.063205 6.12408 6.37184 517.990 456.723 585.132 

11 155 6.08873 0.065249 5.96084 6.21661 441.799 387.936 501.004 

12 156 6.18190 0.066620 6.05133 6.31247 484.986 424.677 551.408 
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IX. Conclusion  
 

 We have seen that the UCM model is a convenient way of additively 

decomposing a time series into components for trend, season, cycle, and irregular 

movements.  Proc UCM in SAS uses the Kalman filter to provide this decomposition and 

some useful diagnostics for determining just what kind of UCM model should be 

specified for the data at hand.  In particular, careful use of tests of error component 

variances and component effects can provide us with a time series model that is not only 

meaningfully interpretable but also competitive as far as forecasting accuracy is 

concerned.  

  

 Of course the UCM model is not the only time series model that we might 

consider for modeling and forecasting time series data like the Box-Jenkins Airline data 

that we have just analyzed.  We will consider the Deterministic Trend / Deterministic 

Seasonal model next and then go on to investigate exponential smoothing models and 

Box-Jenkins models in turn.   
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APPENDIX 

 

BSM.sas Program 

That Fits Various UCMs 

To the Box-Jenkins Airline Data 

 
/* This is the Airline Passenger data originally analyzed by Box and 

   Jenkins in their classic textbook (1970).  */ 

 

/*  Here we apply the Basic Structural Model (BSM) of Harvey (1989) 

    and some extensions thereof to the Airline data.  */ 

 

data airline; 

   input date:monyy5. pass @@; 

   datalines; 

jan49 112 feb49 118 mar49 132 apr49 129 may49 121 jun49 135 

jul49 148 aug49 148 sep49 136 oct49 119 nov49 104 dec49 118 

jan50 115 feb50 126 mar50 141 apr50 135 may50 125 jun50 149 

jul50 170 aug50 170 sep50 158 oct50 133 nov50 114 dec50 140 

jan51 145 feb51 150 mar51 178 apr51 163 may51 172 jun51 178 

jul51 199 aug51 199 sep51 184 oct51 162 nov51 146 dec51 166 

jan52 171 feb52 180 mar52 193 apr52 181 may52 183 jun52 218 

jul52 230 aug52 242 sep52 209 oct52 191 nov52 172 dec52 194 

jan53 196 feb53 196 mar53 236 apr53 235 may53 229 jun53 243 

jul53 264 aug53 272 sep53 237 oct53 211 nov53 180 dec53 201 

jan54 204 feb54 188 mar54 235 apr54 227 may54 234 jun54 264 

jul54 302 aug54 293 sep54 259 oct54 229 nov54 203 dec54 229 

jan55 242 feb55 233 mar55 267 apr55 269 may55 270 jun55 315 

jul55 364 aug55 347 sep55 312 oct55 274 nov55 237 dec55 278 

jan56 284 feb56 277 mar56 317 apr56 313 may56 318 jun56 374 

jul56 413 aug56 405 sep56 355 oct56 306 nov56 271 dec56 306 

jan57 315 feb57 301 mar57 356 apr57 348 may57 355 jun57 422 

jul57 465 aug57 467 sep57 404 oct57 347 nov57 305 dec57 336 

jan58 340 feb58 318 mar58 362 apr58 348 may58 363 jun58 435 

jul58 491 aug58 505 sep58 404 oct58 359 nov58 310 dec58 337 

jan59 360 feb59 342 mar59 406 apr59 396 may59 420 jun59 472 

jul59 548 aug59 559 sep59 463 oct59 407 nov59 362 dec59 405 

jan60 417 feb60 391 mar60 419 apr60 461 may60 472 jun60 535 

jul60 622 aug60 606 sep60 508 oct60 461 nov60 390 dec60 432 

; 

 

data airline; 

  set airline; 

  logpass=log(pass); 

   

title1 'Airline Passengers Jan. 1949 - Dec. 1960'; 

title2 '(thousands of passengers)'; 

 

axis1 label=('Year'); 

 

axis2 order=(100 to 700 by 50) 

      label=(angle=90 'Passengers'); 

 

proc gplot data=airline; 
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   plot pass*date / haxis=axis1 vaxis=axis2; 

   symbol1 i=join; 

   format date year4.; 

 

run; 

 

title1 'Log of Airline Passengers Jan. 1949 - Dec. 1960'; 

title2 '(Log of thousands of passengers)'; 

 

axis1 label=('Year'); 

axis2 order=(4 to 7 by .25) 

      label=(angle=90 'Log of Passengers'); 

 

proc gplot data=airline; 

   plot logpass*date / haxis=axis1 vaxis=axis2; 

   symbol1 i=join; 

   format date year4.; 

 

run; 

 

ods html; 

   ods graphics on; 

 

 /* Here we try out the BSM and Several Extensions of BSM */ 

 

 /* BSM: stochastic level, stochastic slope, stochastic dummy 

    seasonal */ 

 

title 'BSM: stochastic level, stochastic slope, stochastic dummy 

seasonal'; 

 

 proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

        estimate plot=(residual normal acf); 

        run; 

 

  /* BSM2: stochastic level, fixed slope, stochastic dummy seasonal */ 

 

title 'BSM2: stochastic level, fixed slope, stochastic dummy seasonal'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

   estimate plot=(residual normal acf); 

        run; 

 

 /* BSM3: stochastic level, fixed slope, deterministic dummy 

          seasonal  */ 
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title 'BSM3: stochastic level, fixed slope, non-stochastic dummy 

seasonal'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy var = 0 noest plot=smooth; 

        estimate plot=(residual normal acf); 

        run; 

 

 /* BSM4: stochastic level, fixed slope, stochastic dummy seasonal, 

    one stochastic cycle */ 

 

title1 'BSM4: stochastic level, fixed slope, stochastic dummy 

        seasonal,'; 

title2 'one stochastic cycle'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

   cycle plot=smooth;  

   estimate plot=(residual normal acf); 

        run; 

 

/* BSM5: stochastic level, fixed slope, stochastic dummy seasonal, 

    two stochastic cycles */ 

 

title1 'BSM5: stochastic level, fixed slope, stochastic dummy 

seasonal,'; 

title2 'two stochastic cycles'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

  cycle plot=smooth; 

  cycle plot=smooth;  

  estimate plot=(residual normal acf); 

        run; 

  

/* BSM6: stochastic level, fixed slope, stochastic dummy seasonal, 

   non-stochastic cycle  */ 

 

title1 'BSM6: stochastic level, fixed slope, stochastic dummy 

seasonal,'; 

title2 'non-stochastic cycle'; 
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 proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

  cycle noest=variance var = 0 plot=smooth;  

  estimate plot=(residual normal acf); 

        run; 

 

/* BSM7: stochastic level, fixed slope, stochastic dummy seasonal, 

    autoregressive component for cycle */ 

 

title1 'BSM7: stochastic level, fixed slope, stochastic dummy 

seasonal,'; 

title2 'autoregressive component for cycle'; 

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

   autoreg plot=smooth; 

   estimate plot=(residual normal acf); 

        run; 

 

  /*  According to AIC and BIC and significance of components,  

      BSM4 is apparently the best model.  */ 

 

  /* Now we forecast with BSM4.  */ 

 

title 'Forecasts produced by BSM4';  

 

  proc ucm data = airline; 

        id date interval = month; 

        model logpass; 

        irregular; 

        level plot=smooth; 

        slope var = 0 noest plot=smooth; 

        season length = 12 type=dummy plot=smooth; 

   cycle plot=smooth;  

        forecast lead=12 plot=(forecasts decomp) outfor = results; 

        run; 

 

/* Here we are translating the log forecasts into forecasts of 

passengers (in thousands) and then printing them out.  Also the lower 

and upper confidence intervals have been translated as well.  */ 

 

  data results; 

    set results; 

    passf = exp(forecast + 0.5*std**2); 

    passlcl = exp(lcl); 

    passucl = exp(ucl); 
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    if _n_ > 144; 

    keep obs forecast std lcl ucl passf passlcl passucl; 

    run; 

 

  proc print data = results; 

  run; 

 

 

   

 

   


