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I.  Definition of Covariance Stationarity 
 
 A very important concept in time series analysis is the concept of the stationarity 
of a time series.  Consider the time series process Ttyt ,,2,1, L= .  This process is called 
covariance stationary (or simply stationary) if the following conditions hold: 
 
 (i) μ=)( tyE    for all t  
 
 (ii)   for all t     (1) 22 )()( ytt yVaryE σμ ==−
 

(iii) jjttjtt yyCovyyE γμμ ==−− −− ),())((   for all t and a given value of  
 },2,1{ L∈j   
 

Condition (i) states that the time series  has a constant mean irrespective of the time 
period at which it is observed.  Condition (ii) states that  has a constant variance 
irrespective of the time period at which it is observed.  Condition (iii) states that the 
covariance between observations  and  is only a function of j and not t.  The 
covariance between two observations that are j-periods apart is constant no matter when 
the j-period apart observations are observed.   
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 For example consider the so-called AR(1) model 
 
  ttt ayy ++= −110 φφ        (2) 
 
where 1|| 1 <φ is assumed and the error term   has the so-called “white noise” 
properties 

ta

 
 (i)  for all t 0)( =taE
 
 (ii)  for all t       (3) 22 )( ataE σ=
 

 1



 (iii)  for all 0)( =tsaaE ts ≠ . 
 
Thus the error term is white noise because it has a constant zero mean, a constant 
variance, , and the errors are uncorrelated with each other as long as their time 
subscripts do not match.  A Monte Carlo realization of this AR(1) process for 

2
aσ

0.00 =φ , 5.01 =φ , , and T = 100 is reproduced below in Figure 1. 0.12 =aσ
 

Figure 1 
 

 
 

 For the AR(1) process of (2) we show in the Appendix that 
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implies , 0)( =tyE 33.1
5.01

1)( 2 =
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=tyVar , and .  Visually, 

one can see the constancy of the mean and possibly the constancy of the variance but it is 
difficult to visually gauge the constancy of the covariance as prescribed by model (2).  
Nevertheless, the data does seem to have a gentle rolling nature that seems to repeat itself 
as would be implied by the positive covariances of the series.    
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 The above time series is to be compared to a graph where for t = 1 to 50 the 
model is the AR(1) model ttt ayy += −18.0  whereas for t = 51 to 100 the AR(1) model is 

.  See Figure 2 below.  The means of both “half” processes are equal to 
zero and their variances are both 1/0.36 = 2.778 while their covariances are different in 
sign but equal in magnitude for odd values of j but equal to each other for even values of 
j.  For example, for the first part of the data 

ttt ayy +−= −18.0

)778.2(8.0),cov( 1 =−tt yy  while for the 
second half of the data, )778.2(8.0),cov( 1 −=−tt yy .  That is, for the first half of the data, 
the covariance of the observations one period apart is positive.  When last period’s 
observation is above the mean, this period’s observation tends also to be above the 
mean and when last period’s observation is below the mean, this period’s observation 
tends to be below the mean.  In contrast, for the second half of the data, the covariance 
of the observations one period apart is negative.  When last period’s observation is above 
the mean, this period’s observation tends also to be below the mean and when last 
period’s observation is below the mean, this period’s observation tends to be above the 
mean.  This covariance-schizophrenic behavior is reflected in the slow-rolling nature of 
the first half of the data and the “saw-tooth” pattern of the data in the second half.  
Obviously this data is not covariance stationary although the data has a constant mean 
and a constant variance.  It just doesn’t have a constant covariance function. 
 

Figure 2 
 

      
 Another case that turns up sometimes is the “Changing Mean” case as presented 
in Figure 3 below.   
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Figure 3 
 

 
 
In this case the data must also be split into two groups with the groups being modeled 
separately.   
 
 One of the substantial benefits of having a stationary time series is that with one 
realization of the time series (which is usually all we ever have!), one can consistently 
estimate the population mean, variance, and covariances of the time series process using 
the following sample statistics:  
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                                          (sample autocorrelation)  . 
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The last sample statistic, , is the sample statistic for estimating the population 
autocorrelation at lag j, namely, 

jr
)(/),( tjttj yVaryyCov −=ρ .  The display of all of the 

autocorrelations jρ  on the y-axis with the lag j on the x-axis of a graph constitutes what 
is called the population autocorrelation function.  The display of all of the sample 
autocorrelations  on the y-axis with the lag j on the x-axis of a graph constitutes what is 
called the sample autocorrelation function. 

jr

 
   By the term “consistency” we mean that, as the number of observations goes to 
infinity, the following probability statements hold: 
 
   1)|)(|Pr →<− εμyob  as ∞→T     (8) 
 
    as 1)|)(|Pr 22 →<− δσ yysob ∞→T    (9) 
 
   1)|)(|Pr →<− τγ jjcob   as ∞→T     (10) 
 
   1)|)(|Pr →<− κρ jjrob  as ∞→T     (11) 
 
for arbitrarily small values of 0,0,0 >>> τδε and 0>κ .  Thus, in reality the 
conditions (8) – (11) mean that as the sample size on a stationary time series goes to 
infinity, the exact value of the population parameters, and jy γσμ ,, 2

jρ  will become 
known with probability one.  But for sample sizes that are “large” the probability will be 
high that the corresponding sample statistics will be in a small neighborhood of the actual 
population values.  Determining these population parameters with consistency is 
important because they play a crucial part in providing forecasting formulas that yield 
accurate forecasts. 
 
II. Transforming Non-Stationary Time Series to Stationary Form 
 
 Time series that have non-constant means, non-constant variances, and non-
constant covariances are exceeding difficult to forecast.  However, as we will see, a non-
stationary time series can often be transformed to a stationary time series, say by taking 
the natural logarithm of the data and/or differencing the data.  In the above non-constant 
covariance case represented in Figure 2 above, all we have to do is split the data into two 
parts, part I being observations 1 – 50 and part II being observations 51 – 100 and then 
treating them separately as two distinct stationary time series.  The first part of course 
would be of interest to the economic or business historian while the second part would be 
more relevant for the forecaster.  The following three subsections will discuss three 
stationarity transformations that often used to transform non-stationary time series into 
stationary ones.  The first two transformations are often recommended in the Box-
Jenkins approach to building time series forecasting models.   
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 Differencing as a Solution   
 
 A very interesting special case of the first order autoregressive (AR(1)) model of 
equation (2) is when the first-order autoregressive coefficient is equal one )1( 1 =φ .  
Consider the Random Walk without drift model 
 
              (12) ttt ayy += −1

 
where we let .  A Monte Carlo realization of this process is plotted below in 
Figure 4. 

00 =y

 
Figure 4 

 
 
By repeated substitution it is easy to show that (12) yields 
 
   011 yaaay ttt ++++= − L       (13) 
 
where  is fixed at zero.  It follows that  0y

)()( 11 aaaEyE ttt +++= − L     
 
    = 0)()()( 11 =+++ − aEaEaE tt L  ,   (14) 
and  

)()( 11 aaaVaryVar ttt +++= − L     
 
    = ,  (15) 2

11 )()()( att taVaraVaraVar σ=+++ − L

 
the next-to-last equality following from the independence of the .  Also sat '
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   ))((),( 11 aaaaEyyCov jttjtt ++++= −− LL  
 
     =  (16) 22

1
2

1
2 )()()()( ajtjt jtaEaEaE σ−=++ −−− L

 
the next-to-last equality following from the independence of the .  Finally it follows 
that the autocorrelation at lag j is given by  

sat '

 
   )(/),(),( tjttjttj yVaryyCovyyCorr −− ==ρ   
  

    = 
t

jttjt aa
−

=− 22 /)( σσ  .    (17) 

 
 Obviously, the Random Walk without drift process (12) is non-stationary.  
Although the process has a constant mean of zero, its variances is ever-changing from 
one time period to the next and, in fact, it approaches infinity as the sample size goes to 
infinity.  (See (15).)    Moreover, the covariance at lag j is a function of time as well.  
(See (16).)  Also for a fixed lag j, the correlation between observations that are j periods 
apart approaches one as the sample size goes to infinity.  This is rather peculiar behavior 
but that is what is implied by this random walk (unit root) case.  For a fixed sample size 
it should be noted that the autocorrelation function will be very slowly damping starting 
at 1 for j = 0 and only slowly approaching zero at the rate of (1/t) as j goes to infinity.  In 
fact, one might expect the sample autocorrelation function to behave similarly when the 
autoregressive process (2) has a unit root )1( 1 =φ .  It will tend to be very slowly damping 
as well.  
 
 Fortunately, the problem of non-stationarity can be remedied simply by 
differencing the data and instead focusing on the time series .  That is 
because, from (12), we have   

tttt yyyy Δ≡−= −1
*

 
           (18) tt ay =Δ
 
and, therefore,   
 

0)(()( ==Δ tt aEyE       (19)    
 
        (20) 2)()( att aVaryVar σ==Δ
 
and 
 
   0)(),( == −− jttjtt aaEyyCov   for all j and t.   (21) 
 
We can see that the transformed (differenced) series, tyΔ , is stationary because it has a 
constant mean, constant variance, and the covariance function is not a function of t.  The 
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differenced Random Walk of the previous plot is presented below in Figure 5.  Notice its 
roughly contant mean, constant variance, and constant covariance. 
 

Figure 5 
 

       
    Transforming Exponential Growth Data to Percentage Changes 
 
 Another frequently occurring non-stationary time series in business and economic 
data is depicted below.  See Figure 5 below.  This is called exponential growth data 
such that taking the natural logarithm of the data and then differencing the 
logarithmically transformed data produces a stationary time series.  See the below two 
graphs, where the original data  is plotted in Figure 6 and in Figure 7 we have 
plotted the transformed series .  This latter transformation can be thought of a 
percentage change transformation since, for small percentage changes in ,  

)( ty
)log( tyΔ

ty
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t y

yy
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Figure 6 
 

 
 
 
 

Figure 7 
 

 
 
Later on we will learn how to use the SAS Macro %logtest to distinguish 

between the cases where we can simply difference the data versus situations where we 
need to first take the logarithms of the data and then difference the logarithms of the data 
thereafter.  In fact you can see that if one is careful in the inspection of the proposed 
transformed series one can detect whether an appropriate transformation to stationarity 
has been applied or not.  See Figure 8 below where the simple differences of the 
exponential growth data have been plotted.  

)( tyΔ
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Figure 8 
 

 
Obviously, in this case the transformed data are not stationary as the data trends to drift 
up over time and a constant mean and constant variance are not maintained in the data.  
 
 Deterministic Trend versus Stochastic Trend 
 
 Random Walk data can also have a drift in it.  Consider the data plotted in 
Figure 9.  It has been generated by the process 
 
  ttt ayy ++= −10φ        (23) 
 
where 10 =φ  and .  If one were to draw a straight line through this trending data 
one would notice that the crossing rate of that line would be low hence hinting of the unit 
root 

42 =aσ

)1( 0 =φ  in the data.  Again, the stationarity transformation of this data is the first 
differencing operation  since tyΔ tt ay +=Δ 0φ  represents a constant mean, constant 
variance, and constant covariance process. 
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Figure 9 
 

 
 
 See Figure 10 below for the result of applying the difference operation to the 
data in figure 9.  The data has been rendered stationary by taking first differences. 
 

Figure 10  

 
 
 
 However, there exist time series in business and economics that might be better 
characterized as following what is called a deterministic time trend as in  
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   tt aty ++= 10 ββ        (24) 
 
where t is the time index .  Such a trend stationary (TS) time series is 
plotted below in Figure 11 below. 

Tt ,,2,1 L=

 
Figure 11 

 

 
  
 Here you would see many crossing of the trend should you put a trend line 
through the above data.  In later study we will see that Crossing-rate and Dickey-Fuller 
unit root tests can be used to distinguish between these cases.  An important point to 
note here is that in the stationary AR(1) of Figure 1, the data reverts to the mean quite 
often whereas the Random Walk data of Figure 3 rarely does.  Likewise the Random 
Walk with drift data of Figure 9 rarely reverts to a trend line one would place through the 
data whereas the deterministic trend data reverts often to the trend line. 
 
 To the extent that time series data reverts frequently to a mean or trend we call 
such data mean-reverting and having a deterministic trend (mean).  In contrast, to the 
extent that time series data reverts infrequently to a trend we call such data non-mean 
reverting and having a stochastic trend.  To motivate the term stochastic trend, 
consider the following random-walk-like model called the Random Walk structural 
model by Harvey (1989).   
 
  ttt ay += μ        
           (25) 
  ttt εμμ += −1  
 
We will study more about such models when we study Unobserved Components 
models later.  Here we specify that the mean of the series tμ  is stochastic and, in fact, 
follows a random walk without drift.  We can rewrite this model as  

 12



 
  ttt yy ν+= −1               (26) 
 
that is almost like the Random Walk without drift model (12) except now  
 
  tttt aa εν +−= −1             (27) 
 
is a so-called MA(1) error term instead of being white noise.  However, the point is 
made.  Random Walk data behave much like data that has a stochastic random walk mean 
in it, hence the term stochastic mean as compared to a deterministic mean.   
 
 The question might be, “Why make such a big deal over whether a time series has 
a stochastic trend in it which can be treated by differencing or a deterministic trend 
that can be modeled as a constant mean or deterministic time trend?”  The short answer is 
that when forecasting with models that have stochastic trends in them the prediction 
confidence intervals become ever wider the further out into the future one predicts.  In 
contrast, in the deterministic mean or trend models the forecast confidence intervals 
approach a limit equal to the variance of the data around the mean or trend.  Thus the 
conception of trend that one chooses to adopt is an important decision to make and can 
have a substantial effect on how one conveys the uncertainty of predicting a time series in 
the future.  We will see this point more clearly later when we separately examine the 
confidence limits of the deterministic trend model and the Box-Jenkins model.      

 
 
III. The Wold Decomposition (Representation) Theorem 
 
In 1954, Herman Wold proved a very important theorem concerning stationary 

time series data.  Here is a formal statement of Wold’s theorem without proof: 
 
Wold Decomposition (Representation) Theorem:  Any stationary process  

can be uniquely represented as the sum of two mutually uncorrelated processes  and 
where is linearly deterministic and  is a 

ty

tD

tZ tD tZ )(∞MA process.  That is,  
 
         (28) ttt ZDy +=

where   
 
 L+++= −− 22110 tttt aaaZ ψψψ        (29) 
 
with 10 =ψ  and the “psi” weights L,, 21 ψψ  being absolutely summable in that  

∞<∑
∞

=0

||
j

jψ and the are uncorrelated errors that have zero mean and constant 

variance.  *******  

sat '
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 As we shall see,  in the Box-Jenkins models is equal to the mean tD μ   of the 
stationary form of the time series.  However, in the Wold Theorem  can be anything 
ranging from a deterministic time trend

tD
)( 10 tββ + , to a deterministic cycle like  

 
 )cos( θω += taDt        (30) 
 
where  is the amplitude of the cycle, a θ  is the phase, and the period of the cycle (p) such 
that p = ωπ /2  and a deterministic seasonal as in  tD
 
 tssttt SSSD δδδ +++= L2211      (31) 
 
where  is a season dummy variable taking the value of 1 during season k and zero 
otherwise with s number of seasons during the year. 

tkS

 
 The very useful result that the Wold Representation provides us is that all 
stationary Box-Jenkins models of stationary time series  can be written as a  
process as in  

ty )(∞MA

 
   L++++= −− 2211 ttt aaay ψψμ   .   (32) 
 
This form will be very helpful to use, especially as it relates to deriving the properties of 
the models and their forecast functions and confidence intervals.   
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APPENDIX 
 

 Consider the AR(1) model 
 
  ttt ayy ++= −110 φφ        (2) 
 
where 1|| 1 <φ is assumed and the error term   has the so-called “white noise” 
properties 

ta

 
 (i)  for all t 0)( =taE
 
 (ii)  for all t       (3) 22 )( ataE σ=
 
 (iii)  for all 0)( =tsaaE ts ≠ . 
 
We are to show that 
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 Result (A): 
 
 By backward substitution we can confirm the Wold Representation theorem result 
that  
 
  LL +++++++= −− 2

2
111

2
10100 tttt aaay φφφφφφφ

 

 L++++
−

= −− 2
2

111
1

0

1 tttt aaay φφ
φ

φ
 .     (A.1) 

 
In getting (A.1) we used the result that if 1|| 1 <φ , the geometric series  L+++ 2

111 φφ
 
converges to )1/(1 1φ− .  It follows from (A.1) that  
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 Results (B): 
 
 From (A.1) and the independence of the it follows that  sat '
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as desired. 
 
 Result (C):  
 
 Using (A.1) we have  
 
 ))((),( μμ −−= −− jttjtt yyEyyCov    

   
  =  ))(( 2

2
1112

2
111 LL +++++ −−−−−−− jtjtjtttt aaaaaaE φφφφ

 
  =  L+++ −−

+
−−

+
− )()()( 2

2
4

1
2

1
2

1
2

1 jt
j

jt
j

jt
j aEaEaE φφφ

 
  =  )1()( 4

1
2

1
2

1
24

1
22

1
2

1 LL +++=+++ φφσφσφσφσφ a
j

aaa
j

 16



  = 
)1( 2

1

2
1

φ
σφ
−

a
j

 

as desired. 
 
 Result (D):    
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as desired.   
 
End of Appendix.   
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