
THE TRANSFER FUNCTION MODEL 
 
 
 

Notation 
 
 
 Assume, for now, that the target variable ty is stationary (i.e. has a constant mean, 
constant variance, and constant covariance) and that the proposed leading indicator tx is 
stationary as well.  The Transfer Function model is described by the following three 
equations. 
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where μ is the intercept in equation (1), xμ  is the mean of x and  and are white 
noise error terms that are uncorrelated with each other at all forward and backward lags, 
and the "backshift" polynomials are defined as follows: 
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It is assumed for stationarity and invertibility purposes that the roots of the polynomials 

( )Bδ , ( )Bθ , ( )Bφ , *( )Bθ , and *( )Bφ  are outside the unit circle (i.e. the roots are 
greater than one in magnitude if they are real and have a modulus greater than one if they 
are complex).  Thus, corresponding to this assumption, it is quite important that the 
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variables we are analyzing, ty and tx , be in stationary form.  If they are not and, say, 

tyΔ and txΔ are instead stationary, then tyΔ and txΔ should replace ty and tx  in equations 
(1) and (3) above.  
 
 Equation (1) is called the systematic dynamics equation of the Transfer 
Function model because it describes the dynamic relationship between the leading 
indicator, tx , and the target variable ty .  What is the nature of this relationship?  
Obviously, when tx changes it does not cause a change in ty until b periods later.  is 
called the delay parameter in the Transfer Function model.  The nature of the numerator 
and denominator polynomials, 

b

( )Bω and ( )Bδ determine whether the change in tx has a 
finitely-lived effect on ty (after a delay of periods) or whether the change in b tx has an 
infinitely-lived but diminishing effect on ty .  (Recall that it is assumed that the roots of 
the autoregressive (denominator) polynomial ( )Bδ are all outside of the unit circle and 
this guarantees that if ( )Bδ is anything other than 1 (i.e. when > 0) then the effect must 
be diminishing.  We will develop more of the intuition on the relationship between 

s

tx  
and ty  below. 
 
 Equation (2) is called the error dynamics equation. tε is the unobserved error in 
the systematic dynamics equation.  Thus, on average, the dynamic relationship that exists 
between ty and tx is described by  
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The error tε represents the approximate nature of the relationship (1).  Then equation (2) 
says that, to the extent that the deterministic part of the systematic dynamics between 

ty and tx (the right-hand-side of the above equation) is approximate, what is left over to 
be explained can be modeled by a Box-Jenkins ARMA(p,q) model.  Notice that if the 
order of the numerator polynomial, r, is equal to zero, ( )Bω reduces to 0ω .  Likewise, if 
the order of the denominator polynomial, s, is equal to zero, ( )Bδ reduces to 1.  Also 
notice that if r = 0, s = 0, and 0ω = 0, equations (1) and (2) imply that ty follows a Box-
Jenkins ARMA(p,q) model,  
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and 0μ φ= .  Therefore, the Box-Jenkins model for ty is just a special case of the 
Transfer Function model where the leading indicator tx has no effect on the target 
variable ty .  We, of course, will be very interested in distinguishing between the cases 
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where tx  has no effect on ty ( ( ) / ( ) 0B Bω δ = ) and when tx  has a systematic effect on 

ty ( ( ) / ( ) 0B Bω δ ≠ ).  In the former case, tx  turns out not to be a leading indicator of 

ty while in the latter case tx is a viable leading indicator of ty .  Thus, one of the roles of 
the econometrician is to determine whether or not the rational polynomial ( ) / ( )B Bω δ is 
or is not equal to zero.  If ( ) / ( )B Bω δ is equal to zero, the econometrician (as compared 
to the statistician who doesn't know of or use tx ) should discard tx as an aid in 
forecasting the target variable ty and try to come up with another potential leading 
indicator, say , that is useful in forecasting tz ty .   
 
 One way the econometrician can determine whether or not tx is a useful leading 
indicator in forecasting ty (over and above the special case Box-Jenkins model for ty ) is 
to conduct an out-of-sample forecasting experiment and see if the forecasting accuracy 
of the Transfer Function model using tx better than the forecasting accuracy of a simple 
Box-Jenkins model for ty .  (Recall, if ( ) / ( ) 0B Bω δ = , equations (1) and (2) specialize to 
the Box-Jenkins model for, namely,  
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where 0μ φ= , of course.  We will discuss the nature of the out-of-sample forecasting 
experiments in more detail later. 
 
 Equation (3) is called the leading indicator Box-Jenkins equation.  In the Transfer 
Function model the leading indicator tx is assumed to be purely exogenous in that 

tx affects ty  but current and past values of ty do not affect tx .  (This is sometimes called 
one-way Granger Causality.)  In other words, tx follows a stochastic process of its own, 
namely, an independent Box-Jenkins process ARMA(p*,q*).  We here use p* and q* as 
AR and MA orders to distinguish them from the Box-Jenkins orders p and q of the error 
dynamics equation (2).  The assumption that tx is purely exogenous is a very important 
assumption when adopting the Transfer Function model to characterize the relationship 
between the leading indicator tx and the target variable ty .  If this exogeneity assumption 
for tx is not true, we need to use some other time series model to characterize the 
relationship between tx and ty .  (One such model is called the Vector Autoregressive 
model, VAR for short, and given time in this class will be discussed later.)  
 

 One advantage of making a commitment to equation (3) is that, when 
forecasting ty more than b periods ahead, for example, 1T by + + , 2T by + + , L , etc., we need 
future values of tx , namely 1Tx + , 2Tx + , L , etc.  When we are forecasting , say,  
the Box-Jenkins model for 

1T by + +

tx (equation(3)) can be estimated and used to produce the 
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forecast 1ˆTx + , which in turn can be used in the estimated equation (1) to produce a b+1 
forecast of ty , namely, .  Without an estimated version of equation (3) we can't use 
an estimated version of equation (1) to produce forecasts beyond b periods ahead. 

1ˆT by + +

 
 Thus, the Transfer Function model of equations (1), (2), and (3) are dependent on 
the selection of the backshift order b, the polynomial orders r, s, p, q, p*, and  q* and 
implicitly on the orders of differencing, say d and d*, that are required to make ty and 

tx stationary, respectively.  If a d-order difference is needed to make ty stationary and a 
d*-order difference is required to make tx  stationary, d

tyΔ  should replace ty in equation 
(1) and *d

txΔ should replace tx  in equation (3) above and xμ  should be changed to be 
*d x

μ
Δ

, the mean of the d*-differenced tx  series.  From a notational perspective, we can 
represent equations (1) - (3) as TF(b, r, s, p, q, p*, q*, d, d*). 
 
 Before we go on, let’s make some concrete choices of the Transfer Function 
orders d, d*, b, r, s, p, q, p*, and q* so that we can more fully appreciate the nature of the 
Transfer Function model represented by equations (1) – (3).  Let d = d* = 0 (thus and 

 are already stationary), b=1, r=1, s=0, p=0, q=0, p*=1 and q*=0.  Also, for simplicity 
let’s assume that the y-intercept in equation (1) is zero (

ty

tx
μ  = 0) and that the mean of is 

zero (
tx

0=xμ ).  Then, the Transfer Function model for this specific case can be written as  
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In this case the systematic dynamics equation is a two-period distributed lag in  with a 
one-period delay, the error of the systematic dynamics equation is white noise (  ) and 
the purely exogenous leading indicator follows an AR(1) Box-Jenkins process. 

tx
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 As another illustration, let d=d*=1, b=2, r=1, s=1, p=0, q=0, p*=0, q*=1, 

0== Δxμμ  .  Then the Transfer Function model takes the specific form 
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In this case, the systematic dynamics equation consists of tyΔ being explained by a two-
period distributed lag in with a two-period delay and a one-period lag of the 
endogenous variable .  In this model, not only does 

txΔ

tyΔ txΔ  have a two-period delay 
effect on  but last period’s change in (ty ty 1−Δ ty ) also has an effect on this period’s 
change in .  Also the error term in the systematic dynamics equation (1’’) follows an 
MA(1) process.  From equation (2’’) we can see that the error term 

ty

tε is white noise, and 
from equation (3’’) we see that the change in the leading indicator ( txΔ ) follows an 
MA(1) process with MA(1) parameter . *

1θ
 
 Thus with the various choices of d, d*, b, r, s, p, q, p*, and q* we can have a very 
sophisticated description of the relationship that exists between the target variable and 
the proposed leading indicator . 

ty

tx
 
 
Impulse Response Function 
 
 
 For the moment let us consider the deterministic form (i.e. without the error term 

tε ) of the systematic dynamics equation 
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where, for simplicity, we let 0=μ .  Assuming that the roots of the polynomial )(Bδ are 
all outside of the unit circle, we can write (4) in the impulse response form 
 
  L+++= −−−−− 22110 btbtbtt xxxy υυυ  ,      (5) 
 
an infinite distributed lag in  .  The coefficients L,,, 2,1 −−−−− btbtbt xxx L,,, 210 υυυ  are 
called the impulse response coefficients associated with the (deterministic) systematic 
dynamics equation (4).  The interpretation of these coefficients is as follows:  Consider 
increasing x one unit at time t=0 and in the next period (t=1) returning it to its original 
value.  0υ  is called the impact coefficient and represents the initial impact that the one-
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period, one-unit increase in x has on y after a delay of b periods.  1υ  is the delay-1 
coefficient that represents the effect that a one-period, one-period change in x  has on 
y after a delay of b+1 periods.  L,, 32 υυ , have similar interpretations and are called the 
delay-2, delay-3, etc. impulse response coefficients. 
 
 For example, let b=0, r=0, and s=0.  Then the (deterministic) systematic dynamics 
equation (4) becomes 
 
   tt xy 0ω=  .      (4’) 
 

Furthermore, let be 0 for all time periods prior to and following t = 0, but equal 
to 1 at time period t=0.  Now what impact does this type of change on 

tx
x have on ?  

Well, is equal to zero except at time t=0 and then it is equal to 
ty

ty 0ω .  Therefore, the 
impulse response function for equation (4’) is  
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This can be plotted as 
 
 

 
 

Now consider the case where .0,1,0 === srb  Therefore, the (deterministic) 
systematic dynamics equation becomes 
 

110 −−= ttt xwxwy                                                                   (4”) 
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Let  have the one-period change of equation (6). What is the impact of this 
change of ? Well, is zero except at time t=0 and then 

tx

ty ty 00 wy = . In the following 
period , Therefore, the impulse response function for (4’’) is  11 wy −=
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That is and , letting 00 wv = 11 wv −= 01 <w  and 10 ww < , we have the plot of the 
impulse responses: 
 

 
Then a one-period, one –unit change on  gives rise to an immediate change in 

of units and then one more change in  of 
tx

ty 0w ty )( 01 ww −−  units  
in period one and thereafter  resumes the value of 0. 

),( 1100 wywy −==

ty
 

Of course, if we had contemplated the functions 20 −= tt xwy and 
. The corresponding impulse functions would have been just like the 

ones above but moved to the right by two periods, the amount of the new delay of 
3120 −− −= ttt xwxwy

2=b  
instead of . Now consider one more deterministic, systematic dynamics equation 

 
0=b

:1,1,0 === srb
 

11110 −− +−= tttt yxwxwy δ                                                    (4”’) 
 

 
where we assume 10 1 << δ , and in particular, 10 1 << δ . Again let  evolve as in 
equation (6) and let’s see what happens to  over time 

tx

ty
0=ty  for t=………,-3,-2,-1 

 
00 wy =  
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cwwywy =+−=+−= 0110111 δδ , say  

 
cwwyy 10110112 )( δδδδ =+−==  
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11
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The impulse response function then becomes 
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Which, plotted is  
 
 

 
Where, for plotting purposes, we have assumed that ,0wc > 10 1 << δ . Therefore, 

given the (deterministic) systematic dynamics equation of (4’’’) we see that a one period, 
one-unit change on  at t=0 results in being in time periods 
t=0,1,2,3,….. , respectively. That is, from its original “equilibrium”, , the 
successive deviations of 

tx ty ,......,,,, 2
110 cccw δδ

00 =y
y from this original equilibrium beginning with time t=0 are 

units and then one more change in  of ty )( 01 ww −−  units ),( 1100 wywy −==  in period 

one and thereafter  resumes the value of 0  etc. until long enough 
into the future of settles back down to its original equilibrium of 

ty ,......,,,, 2
110 cccw δδ

0=y . Of course, if the 
equation (4’’) we had let  instead of 2=b 0=b , we would have the same impulse 
responses as before but they would be delayed two periods and the impulse response 
graph immediately above would be shifted to the right by two periods. 
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We can, of course, generalize from this set of algebraic exercises. Again consider 
the general (deterministic) systematic dynamics equation 
 

bts
s

rr
btt x

BBB
BwBww

x
Bf
Bwy −− −−−

−−−
==

)..........1(
).......(

)(
)(

2
21

10

δδδ
                  (4) 

 
Is there anything in general that we can say about the impulse responses 

associated with such an equation. The answer is yes! Given b=0,1,2,….., or some integer, 
we know that the impulse responses are zero for lags j=0,1,2,…..,b-1, until j=b and then 

 will equal to . If s=0 and the denominator polynomial is the scalar 0v 0w 1)( =Bδ , then 
there will be r impulse responses after j=b that will be non-zero. In summary there will be 
r+1 non-zero impulse responses beginning with the lag j=b when the systematic 
dynamics follows the equation 
 

122110 ...... −−−−−−− −−−−= btrbtbtbtt xwxwxwxwy                      (4’’’’) 
  
But now consider when 0≠s and is same positive integer. Then we can say that 

beginning with lag j=b there will be a total of r+1 irregular impulse responses before the  
impulse responses begin a systematic decay to zero, either exponentially or sinusoidal 
(we don’t know exactly until we know the signs and magnitudes of the sδδδ ,.......,, 21  
coefficients), The decay of the impulse responses is guaranteed by the assumption that 
the roots of )(Bδ , lies outside the unit circle. 
 

In the case of the model (4’’’) the impulse response function will be given by  
 

{ .....0,1,2,....j       , == jj wv  
 

In the case when we have  0≠s
 
 

ststtrbtrbtbtbtt yyyxwxwxwxwy −−−−−−−−−− ++++−−−−= δδδ ........... 221122110       (4’’’’’) 
 
 

Here the impulse response function will be of the form 
 
 

⎩
⎨
⎧ +

=
+++ .continuing andwith  beginning responses declining sinusoidalor lly exponentia,.......,,

 them)of 1rresponses( irregular" "                                                                      ,,....,,

121

10

rrr

r
j vvv

vvv
v

 
 

In summary then, we can look at the number of periods delay before the first 
nonzero impulse response occurs and we will be able to determine the value of b. 
Thereafter, r will be determined by the number of “irregular” (not part of the decay) 
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impulse responses before the impulse responses either because all zero. Thereafter or 
decay away to zero Now whether the impulse responses decay to zero or cut off to zero 
determines whether or not s=0 or 0≠s  and there is an autoregressive part to the 
(deterministic) systematic dynamics equation. If the impulse responses cut off to zero 
after r+1 irregular responses the s must equal zero. Otherwise s=1,2,…… or same 
positive integer. 

 
As you can see, the impulse response function can help us identify the b, r, and s 

orders in the systematic dynamics equation. When we add back in the error term of the 
systematic dynamics equation  
 
 

tbtt x
Bf
Bwuy ε++= −)(

)(                                                      (1) 

 
 

Then the impulse response coefficients need to be interpreted as the expected 
level of  at various subsequent periods give a one-time, one-unit change on . Of 
course, when the polynomials and 

ty tx
)(Bw )(Bδ are estimated from the data resulting in 

 and  we get the estimated impulse 
response polynomial  

r
r BwBwwBw ˆ.......ˆˆ)(ˆ 10 −−= s

s BBB δδδ ˆ.....ˆˆ1 2
21 −−−

 

.....)ˆˆˆ(
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)(ˆ 2
210 +++== BvBvv

B
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and the estimated impulse response function ,......)2,1,0,ˆ( =jv j  is not always as 
informative as theoretical impulse response function ( ,......2,1,0, =jv j ) 
 
The Cross-Correlation Function 
 

One drawback of using the theoretical impulse response function and its empirical 
counterpart, the estimated (sample) impulse response function is that the choice of the 
scales of measurement of and (or alternatively the scales of measurement of  
and ) affects the magnitude (but not the pattern) of the impulse response 
coefficients. Alternatively, we can construct a function called the cross correlation 
function that mimics the delay, irregular spike, and cutting off or declining behavior of 
the impulse response function yet the correlations are, by design, between –1 and +1 and 
the invariant to the choice of the scales of measurement of and . 

ty tx t
d yΔ

t
d xΔ

ty tx
 
Let’s turn to the definition of the cross correlation function. Let and  be two 

stationary time series that are potentially related to each other. Consider the following 
notation: Let  

tw tz
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))(()( zjtwtwz uzwEj −−= +μγ                                                (7) 

 
                                                     j=-3,-2,-1,0,1,2,3 
 

denote the cross-correlation between and  at lag j. Notice that the lags j can be either 
positive or negative. For example, if 

tw tz
0)( >jwzγ , then if is above (below) its mean tw

wμ now then, more likely than not, will be above its mean two periods from now. Of 
course is not invariant to the scales of measurement one might choose for and 

(100’s, 1000’s, 10000’s etc.) but the cross-correlation at lag j between and  is: 

tz
)( jrwz tw

tz tw tz
 

)0()0(
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)var()var(
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)(
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tt
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j
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j
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γγ
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ρ ==                                (8)  

 
 

where           ))(()( zjtztzz uzzEj −−= +μγ  
 
and              ))(()( wjtwtww uwwEj −−= +μγ  
 
are the autocovariance functions of and , respectively, and thus tw tz )0(wγ and )0(zγ are 
the variance and , respectively. By constructiontw tz 1)(1 <<− jwzρ and this is the case 
regardless of the choice of the scale of measurement of and . For example, 
if

tw tz
8.0)( =jwzρ  then the correlation of now with  two periods from now is 0.8 and if, 

say  is above its mean 
tw tz

tw wμ , now then, were likely than not,  will be above its mean, tz

zμ , two periods from now. 
 

Of course, if is purely exogenous with respect to the tw tz 8.0)( =jwzρ  for j=…. , 
-3,-2,-1. That is , previous deviations of  from its mean do not affect current and future 
deviations of from its mean. However, if does affect  either concurrently or in the 
future( as would be expected of is a leading indicator of ) then measure of the 

tz

tw tw tz

tw tz
)( jwzρ for j=0,1,2,……. Will be one-zero. 

 
Let us then derive the cross-correlation functions for some simple transfer 

function models: consider the case of 
. We have 0,0,0,0,0,0,0,0,,0,0 *** =========== ddqpqpsrbbx μμ

 
tbtt xwy ε+= −0                                                                      (9) 

 
where tt a=ε                                                                         (10) 
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and                                                                             (11) tt ux =
 

is the white noise process. 
 
Then 
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Since, by assumption,  and  are uncorrelated at all leads and lags, following 

from  
tx jta +
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is the autocovariance function for x and y given model (9)-(11). The cross-correction 
function for x and y given this model is 
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In summary, the cross-correlation function for the model (9)-(10) is plotted as 
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where here we have assumed that . There is one spike, after a delay of b periods, 
and then also, reflecting the exogeneity of  vis-a-vis the negative it cuts off logs of 
the cross-correlation function are all zero 

00 >w

tx ty
3,-2,-1-.....jfor   0)( ==jxyρ . That is the 

”signature” (vis-à-vis the cross-correlation function) of the model (9)-(11) where 
r=0,s=0,and b=1. 
 

Now consider a second model 
 

tbtbtt xwxwy ε+−= −−− 110                                                      (12) 
 

tt a=ε                                                                                    (13) 
 

ttx μ=                                                                                    (14) 
 

0,0,0,0,0,0,0,1, *** ========= ddqpqpsrbb  
 

The covariance function is defined to be  
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where we have  0)aE(u)aE(x jttjtt == ++  for all j. Then  
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This translates into the cross-correlation function of  
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In graphical form of the cross-correlation function can be plotted as follows: 

 
In this graph we have assumed that 100 ww −<< .  

Finally, consider the model  0,0,0,0,0,0,1,1, *** ========= ddqpqpsrbb
 

ttbtbtt yxwxwy εδ ++−= −−−− 11110                                    (15) 
 

tt a=ε                                                                                          (16) 
 

tt ax =                                                                                          (17) 
 

 
[ ]
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where we have  0)aE(u)aE(x jttjtt == ++  for all j.  Then for j<1, 0)1( =−jγ  
because the covariance between  and previous lags of , acutely, , ,…, are all 
zero by the pure exogeneity of the leading indicator equation. In the model (15)-(17), 

tx ty 1−ty 2−ty

0)1(......)1()0( =−=== bxyxyxy γγγ  because 0)()()( === ++ jttjttxy yEyxEj μγ  for j<b 
as well. When j=b however we have  
 

2
00 )0()1( xxxxy wwb σγγ ==+ .  

 
Also for j=b+1 we have 

 
,)()0()1( 2

01
2

111 mwwbwb xxxyxxxy =+−=+−=+ σδσγδγγ  
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For j=b+2 we have  
 

,)1()2( 11 mbb xyxy δγδγ =+=+  
 

For j=b+3 we have 
 

,)2()3( 2
11 mbb xyxy δγδγ =+=+  

 
In general then our covariance function is 
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xy

δ
σδσ

σ
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This implies that the correlation function for the model (15)-(17) is 
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⎪
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σ

σ
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In graphical form the cross-correlation function can be plotted as 
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where in graphing we have assumed that 00 w< , 00 >>
y

xwc
σ
σ

 and 10 1 << δ . This is a 

“ signature” cross-correlation function for a transfer function model where b=b( there is a 
b period delay before the “spikes” begin), then there are(r-1) “ irregular” spikes before an 
exponential or sinusoidal decay begins and then thereafter, instead of cutting off as when 
s=0, the cross-correlation function decays away when s=1>0. 
 

The deviation of the cross-correlation function of a transfer function model is 
somewhat more complicated when  is not a white noise series. However, we can 
calculate the cross-correlation function of the “pre-whitened”  and  series and obtain 
analogous results to those we obtained before. Assuming that  and  are already 
stationary, for example, the pre-whitened series we need to cross-correlate are, 

tx

ty tx

ty tx

 

)(
)(

B
Byy tt θ

φ
=+    

 
and  
 

tttt B
B

B
B

B
Bxx μμ

θ
φ

φ
θ

θ
φ

===+

)(
)(

)(
)(

)(
)(  

 
where the pre-filter is . 
Cross-correlating the pre-filtered leading indicator (i.e the white noise errors of the 
leading indicator Box-Jenkins model), , with the pre-filtered 

θθθφφφθφ −−−−−−= L2
11

2
21 1/()......1()(/)( BBBBBBB p

p

ttx μ=+ y series, , 
produces a cross-correlation function which provides a pattern that allows us to identify 
the delay parameter, b and numerator and denominator polynomial orders, r and s, 
respectively, that correspond to the transfer function for the original data and . 

Applying the pre-filter 

+
ty

ty tx

)(
)(

B
B

θ
φ  to the systematic dynamics equation (1). 

 
Summarizing, the cross-correlation function of a transfer function model with a 

systematic dynamics equation of  
 

tbtt B
Bwxy ε

δ
μ ++= − )(

)(  

 
should have no spikes until j=b, then have r more “irregular” spikes (spikes not part of a 
systematic decaying pattern), followed by either a cutting off behavior if s=0, or a 
decaying pattern if s=1 ( or some other positive integer) provides the pre-filter are 
transfer function-model 
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 tbtt B
B

B
B

B
Bwx

B
By ε

θ
φ

θ
φ

δθ
φ

)(
)(

)(
)(

)(
)(

)(
)(

+= −  

 
+

−
++

−

+ +=+= + tbttbtt B
Bw

B
Bwxy εμ

δ
ε

δ )(
)(

)(
)( , 

 
where 0=μ  has been conveniently(but without loss of result) imposed. Analyzing the 
cross-correlation function between  and (ie.+

ty +
tx tμ ) clearly reveals the original rational 

( polynomial structure 
)(
)(

B
Bw

δ
) of the relationship between the original  and  syt ' sxt ' .

 
Sample Cross-correlation Function 
 

When we discussed the theoretical ACF and PACF functions, it was noted that we 
had to construct sample estimates of them before proceeding to build a Box-Jenkins 
model. Similarly, we need to construct a sample cross-correlation function which 
hopefully closely resembles the theoretical cross-correlation function before we can build 
a transfer function linking a leading indicator, , with a target variable , say 

and . What we need are the sample variances of the estimated pre-filtered 
series: 

tx ty
)0(xxc )0(yyc

 

)(ˆ
)(ˆˆ

B
Byy tt θ

φ
=+   

 
and 
 

)(ˆ
)(ˆˆ

B
Bxx tt θ

φ
=+  

 
where the estimated pre-filter is  
 

p
p

p
p

BBB

BBB

B
B

θθθ

φφφ

θ
φ

ˆ......ˆˆ1

ˆ......ˆˆ1

)(ˆ
)(ˆ

2
21

2
21

−−−

−−−
=  

 
and the  and have been obtained by estimating an appropriate Box-Jenkins model for 

(we are implicitly assuming in this discussion that  and are already stationary) 
iφ̂ iθ̂

tx tx ty

A consistent estimate of the variance of  is +
ty
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                                      (18) 

where +
tŷ = the sample mean of the , namely +

tŷ ∑
=

+T

t

t

T
y

1

ˆ
  

 
A consistent estimate of the variance of  is +

tx
 

Tc

T

t
t

xx tt

∑
==++
1

2ˆ
)0(

μ
                          

                                        (19) 
 
where are the Box-Jenkins white noise residuals for the leading indicator equation(3). tμ̂
A consistent cross-covariance estimate at lag j is given by 
 
 

         

⎪
⎪
⎩
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=
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1

1

...0,-1,-2...jfor   )ˆˆ(ˆ1

..0,1,2,3,..jfor   )ˆˆ(ˆ1

)0(
μ

μ
         (20) 

 
 

Finally the sample cross-correlation function is 
 

⎪⎩

⎪
⎨
⎧

=
++++

++

++

)0()0(

)(
)(

tttt

tt

tt

yyxx

yx

yx cc

jc
jγ    j=…..-3,-2,-1,0,1,2,3…..      (21) 

 
This is a consistent estimate of the theoretical cross correlation function  

⎪⎩

⎪
⎨
⎧

=
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)0()0(
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tt
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yx
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γγ

γ
ρ  

 
Under the assumption that  and  are totally correlated with each other (and 

thus that the pre-filtered  and are unrelated to each other), the standard error of the 

estimates, 

tx ty
tx+

ty +

)( j
tt yx ++γ , is approximately (in large samples) 

T
1  , that is, 

T
jSE

tt yx

1))(( =++γ  when 0)( =++ j
tt yx

ρ . Then if an observed sample cross-correlation 
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coefficient, say )( j
tt yx ++γ , is outside of the 95% confidence interval 

(
T

96.1− ,
T

96.1 ), one could conclude that the theoretical cross-correlation between 

 and  at lag j, tx+
ty + )( j

tt yx ++ρ , is nonzero, using the above confidence interval, 

hopefully, we can distinguish between significant spikes in the sample cross-correlation 
function and the “zero” values at certain lags. What may be difficult to discuss in the 
sample cross-correlation function-is “cutting off” behavior and “tailing off” behavior 
which is the distinguishing characteristic between transfer function models with s=0 
(cutting off) versus s=1(or some other positive integer) when tailing off. 

 
Identification of Transfer Function Models
 
The steps for identify a TF ( ) *** ,,,,,,,, ddqpqpsrb
Model are as follows: 
 

(1) Visually inspect plots of the leading indicator  and target variable  and 
determine the order of differencing needed to transfer  (or possibly log  ) to 
stationarity difference ( )and the order of differencing needed to transfer  ( or 
possibly log  ) to stationarity ( ). The stationary form of  is then (or 
possibly ) while the stationary form of  is then (or possibly 

). 

tx ty

tx tx
*d ty

ty d tx t
d x*Δ

)log(*
t

d xΔ ty t
d yΔ

)log( t
d yΔ

 
(2) Fit a Box-Jenkins model for the stationary form of the leading indicator, , 

namely . You will then determine the orders  and  for the ARIMA 
( , , ) model of the leading indicator . 

tx

t
d x*Δ *p *q

*p *d *q tx
 
 

(3) Given estimated Box-Jenkins model for the leading indicator  form the 

estimated pre-filtered values 

tx

t
d

t
d y

B
By Δ=Δ +

)(ˆ
)(ˆ)(

θ
φ  and t

d
t

d x
B
Bx **

)(ˆ
)(ˆ)( Δ=Δ +

θ
φ . 

Calculate the sample cross-correlation function between these estimated pre-
filtered series. Use the 95% confidence interval (

T
96.1− ,

T
96.1 ) to 

determine which sample cross-correlations are significant and which ones are not. 
Choose b t be the lag at which the first significant cross-correlation occurs, then 
choose r based on the number of “irregular” spikes in the sample cross-correlation 
minus one and then choose s=0, if the sample cross-correlation function cuts off, 
and s=1(or some other positive integer) if, after the irregular spikes, the sample 
cross-correlation function systematically tails off. 

 

 19



(4) Estimate the suggested transfer model using the b, r, and s values you determined 
in step (3). Also for your chosen value of b, estimate additional models, if any, 
suggested by the sample cross-correlation function. Between the competing 
models choose the model that has the smallest goodness-of-fit measures, AIC and 
SRC, white noise residuals and statistically significant coefficient (apart from 
possibly the μ ). 

 
(5) In certain instances you may not be able to find values of r and s, for you given b 

value, which will produce white noise residuals. If so, you need to fit a Box-
Jenkins model to the residuals tε̂ . Obtain reasonable values for p and q for the 
Box-Jenkins model of the residuals of your systematic dynamics equation (1). 
This is called “mapping up” the auto correlation in the residuals of the systematic 
dynamics equation. In so doing will have tentative values of b, r, s, and p and q, 
that produce the smallest goodness of fit measures AIC and SBC, white residuals, 
and statistically significant coefficients. 

 
(6) Before making the tentative model of step(5) the final model of choice, you need 

to examine the t-statistics of four overfitting models. Given a b value (the delay 
parameter), there is one over-fitting model for each of the dimensions, r, s, p, and 
q incrementing one order while holding the rest of the orders fixed at the tentative 
choice. If each the t-statistics of the overfitting parameters of the four overfitting 
models are each statistic less than 1.96 or the absolute value of the t statistic is 
less than 1.96 or the p-value of the t-statistic is greater than 0.05), then “fall back” 
to the tentative model of step (5) and make final choice. 

 
(7) Use your transfer-function-model model in an out of sample forecasting 

experiment and compare the forecasting accuracy of the model (using either 
MAE, MSE, or the boss’s loss function of choice) with the forecasting accuracy 
of a properly chosen Box-Jenkins model produces more accurate forecasts (using 
the leading indicator) then the Box-Jenkins model (which ignores the leading 
indicator) then the leading indicator would appear to be useful and the transfer 
function model should be used for future forecasting tasks. On the other hand, if 
the Box-Jenkins model should prove to be more accurate than the Transfer  
Function model, we should drop consideration of the leading indicator  and 
consider building a different transfer function using another proposed leading 
indicator, say, . 

tx

tz
 
Estimated transfer function model for series M data set.

ty = sales of carpet store at time t 

tx = housing permits issued in the county at time t 
 

stationary form of :  d=1 ty tyΔ
 
stationary form of :   =1 tx txΔ *d
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Box-Jenkins model for the leading indicator (using the M sample dataset of obs 1-120) tx

txΔ = 
 
Therefore, , . 0* =p 1* =q
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