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I. Introduction 

 

 

In the past we have focused on the building of accurate univariate time series forecasting 

models (Box-Jenkins, UCM, etc.). These models rely solely on various characterizations of 

the trend, seasonality, and cycle of the time series being modeled (the target variable).  But 

what if there exist other variables, supplementary variables, which, when modeled in 

conjunction with the target variable, provide more accurate forecasts of the target variable.  A 

very popular multiple time series model that incorporates these supplementary variables is 

called the Vector Autoregressive (VAR) model.  Here we will use this model to judge the 

usefulness of proposed supplementary (leading indicator) economic and business variables, 

say x, w, and z, for improving the forecasting accuracy of target variables which we label y. 

 

For example, consider the two time series y and x plotted below by the SAS program 

Mplot.sas.  These two series are taken from the Box and Jenkins (1970) textbook.  They call 

the series the “M” data set.  The first graph plots the raw data while the second graph plots 

the 3-term, centered moving average of the series.   Taking the moving averages of the series 

makes them smoother and by so doing it is then easier to see the relationship between the 

series.  Notice that the peaks and troughs of the x series lead the peaks and troughs of the y 

series by roughly 3 months.  The question then is whether we can forecast y more accurately 

by using the “supplemental” information that seems to be present in the x series.  That is the 

task of this chapter.   

 

The source of the M data series is not given in the Box and Jenkins textbook and 

therefore may be simulated series.  Regardless, they model the two time series 

simultaneously using a so-called transfer function model.  We use a slightly different 

approach, the VAR model, in modeling the two time series together.  To make this 

presentation more motivating, let us assume the y series represents the monthly sales in the 

SHAZAM carpet store in Flower Mound, Texas.  Furthermore, assume the x series is a 

monthly series of observations on the housing starts in the county where Flower Mound is 

located.  Obviously, housing starts eventually lead to housing completions and homes sold 

with extensive carpeting in them.  Then, at least in theory, the housing starts series could be 

helpful in focusing SHAZAM’s carpet sales.              
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 To examine the efficacy of the x series as a useful supplement in forecasting the y series, 

we can conduct an out-of-sample forecasting experiment.  Let us partition the 150 observations 

on these series into two parts – the first 120 observations being designated as the in-sample data 

set and the last 30 observations being designated as the out-of-sample data set.  To carry out 

the experiment we need to carry out a “forecasting competition” between a purely statistical 

model for the y series like the Box-Jenkins model and a model that, in addition to modeling the 

target series (y), also incorporates the potentially useful supplemental (leading) indicator (x).  

This model is the Vector Autoregressive (VAR) model.  Then, given the out-of-sample 

experiment, if the VAR model, which incorporates the leading indicator, produces more accurate 

forecasts of the target variable than a univariate Box-Jenkins model that ignores the potential 

usefulness of the x series, we can conclude that the leading indicator is useful in forecasting y. 

 

II. The Vector Autoregressive Model   

 

 Before we turn to examining the efficacy of the x series as a leading indicator of y in the 

M data set, let us establish the notation and particulars of the Vector Autoregressive model.  Let 

𝑦𝑡1 = 𝑦𝑡  and 𝑦𝑡2 = 𝑥𝑡  be time series observations at time t on the target variable and leading 

indicator series, respectively.  Then the first-order Vector Autoregressive model, abbreviated 

VAR(1), is written as 

 

  𝑦𝑡1 =  ∅10 +  ∅11𝑦𝑡−1,1 +  ∅12𝑦𝑡−1,2 + 𝑎𝑡1                                        

            (1) 

  𝑦𝑡2 =  ∅20 + ∅21𝑦𝑡−1,1 +  ∅22𝑦𝑡−1,2 +  𝑎𝑡2  . 

 

The first equation of the system (1) specifies that the first variable is a function of one lagged 

value of itself and one lagged value of the second variable while the second equation specifies 

that the second variable is a function of one lagged value of itself and one lagged value of the 

first variable.  The errors of the equations (𝑎𝑡1 and 𝑎𝑡2) are assumed to have zero means and to 

be uncorrelated among themselves and only contemporaneously correlated between each other.  

In particular the errors satisfy the following properties. 

 

   𝐸  
𝑎𝑡1

𝑎𝑡2
 =   

0
0
     for all t      (2) 

 

   𝐸  
𝑎𝑠1𝑎𝑡1 𝑎𝑠1𝑎𝑡2

𝑎𝑠2𝑎𝑡1 𝑎𝑠2𝑎𝑡2
 =   

0 0
0 0

   for all 𝑠 ≠ 𝑡   (3) 

 

   E 
𝑎𝑠1𝑎𝑡1 𝑎𝑠1𝑎𝑡2

𝑎𝑠2𝑎𝑡1 𝑎𝑠2𝑎𝑡2
 =   

𝜎11 𝜎12

𝜎21 𝜎22
   for all 𝑠 = 𝑡   (4) 

 

and 𝜎12 = 𝜎21  in equation (4).  Loosely speaking, we refer to these errors as being “white noise” 

errors.      

 

As shown by Sims (1980), the equation system (1) can be thought of as a unrestricted 

reduced form of a simultaneous equation system involving two endogenous variables 𝑦𝑡1and 𝑦𝑡2.  

A long history of the usage of this model and its p-lag length generalization has shown it to be 

useful as a forecasting method.  See, for example, (references).  As the length of the lags on each 
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of the variables in each of the equations is the same (one), the VAR system is called an equal-

lag length VAR. 

 

 The p-equal-length VAR generalization of (1) is given by the system (5) below. 

 

  
𝑦𝑡1

𝑦𝑡2
 =  

∅10

∅20
 +  

∅11
(1)

∅12
(1)

∅21
(1)

∅22
(1)
  

𝑦𝑡−1,1

𝑦𝑡−1,2
 +  

∅11
(2)

∅12
(2)

∅21
(2)

∅22
(2)
  

𝑦𝑡−2,1

𝑦𝑡−2,2
    

 

   + ⋯+   
∅11
 𝑝 ∅12

 𝑝 

∅21
 𝑝 ∅22

 𝑝 
  

𝑦𝑡−𝑝 ,1

𝑦𝑡−𝑝 ,2
 +   

𝑎𝑡1

𝑎𝑡2
 .    (5) 

 

 The matrix form of (5) is given by 

 

 𝐲𝐭 =  ∅𝟎 + ∅𝟏𝐲𝐭−𝟏 + ∅𝟐𝐲𝐭−𝟐 +  ⋯+ ∅𝒑𝐲𝐭−𝐩 +  𝐚𝒕   .    (6) 

 

In estimating the coefficients of (5) it is assumed that the two series 𝑦𝑡1 and 𝑦𝑡2 have been 

transformed to stationary form (constant mean, constant variance, and constant covariance) by 

differencing the original series or possibly transforming the data to percentage-change form by 

taking the natural log of the data and then differencing the logged data as in 𝑧𝑡 = 𝑙𝑛 𝑥𝑡 −
ln(𝑥𝑡−1) when the data has an exponential growth appearance.  Of course, if the original data is 

already stationary, then no transformation of the series is needed.  In the case of the series M 

data, Augmented Dickey-Fuller tests indicate that both series need to be differenced in order to 

make them stationary.  Thus, here 𝑦𝑡1 =  ∆𝑦𝑡  and 𝑦𝑡2 =  ∆𝑥𝑡  .  A sufficient condition for the 

VAR(p) system to be stationary is that all of the eigenvalues of the following “companion” 

matrix be less than one in modulus (i.e. the absolute value of a real root is less than one and 

when the root is complex as in a ± bi, then  𝑎2 +  𝑏2 < 1. ) 

 

  

 

 
 

∅1 ∅2 ⋯ ∅𝑝
𝐼2 0 ⋯ 0
0
⋮
0

𝐼2
   ⋱
⋯

0 ⋯
⋮
𝐼2

0
0  

 
 

        (7) 

 

The matrix (7) is of dimension 2p x 2p.  If, when the coefficients in (7) are replaced by their 

estimates, the eigenvalues of such an estimated matrix are not all less than one in modulus, then 

one might think again as to whether the right dimension (p) has been determined for the VAR or 

possibly that, contrary to first opinion, the variables of the VAR have not been sufficiently 

transformed to stationarity. 

 

III. Choosing the Right Lag-Length for the VAR    
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