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Artificial Neural Networks (hereafter ANNs) can be used for either prediction or 

classification problems.  ANNs are based on representations of neural activity in the 

brain.  The most popular design for ANNs is the so-called multilayer feed-forward 

network.  Such networks have an input layer, an output layer, and one or more hidden 

layers.  The following “architectural” diagram represents a 3-2-1 prediction ANN.  The 

first number, 3, represents the number of inputs in the input layer; the second number, 2, 

represents the number of “neurons” or “nodes”, 2, in the hidden layer, and the last 

number, 1, represents the number of nodes in the output layer.   

 

3-2-1 ANN Architecture 

 

 

 

 
X1, X2, X3 = three inputs.  h1, h2 = hidden node in hidden layer 

Φ = output.  w10, w20, wΦ0 = “bias” weights, otherwise  

w’s first subscript = hidden node number 

w’s second subscript = input number 

A total of 11 weights to be determined. 
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In the above diagram ,, 21 xx  and 3x  represent the three inputs, the two hidden 

nodes are represented by 1h  and 2h , and the output node is represented by  .  Moreover 

the “weights” connecting the three inputs to the first hidden layer are represented by 

,, 1211 ww and 13w where the first subscript, 1, represents linkage to the first node of the 

hidden layer, whereas the second subscript represents the input that the weight is 

associated with.  Similarly, the weights connecting the three inputs to the second node of 

the hidden layer are represented by ,, 2221 ww  and 23w .  In going from the hidden layer to 

the output layer the weights for the two hidden nodes are represented by 1w  and 2w .  In 

addition to these “connecting” weights, this ANN also has bias weights w10, w20, and wΦ0.     

 
 In ANNs the weights are applied vis-à-vis so-called “squashing” or 

transfer functions, say )(zf .  Popular squashing functions include the logistic function, 

the arc tangent function, and the linear function.  In XLMINER prediction problems the 

hidden layer squashing function is the logistic function, whereas the squashing function 

for the output layer(s) is the linear squashing function.  This is because in prediction 

problems the output variable is an interval variable and can potentially range in value 

from   to  . In contrast, for classification problems, the output squashing 

function(s) is the logistic function because, in classification problems, the output 

variables are of the binary form. 

 

To demonstrate the estimated form of a simple 3-2-1 ANN we consider the 

Boston Housing data.  The output variable is MEDV, the median value of homes in the 

given Boston housing district, while the input variables are RM, AGE, and DIS.  The 

ANN output for a 60% training data set with the inputs being normalized (more about 

this later) is reproduced below: 

 

 
Inter-layer connections weights    

      

  Input Layer 

 
Hidden Layer # 
1 

RM AGE DIS Bias Node 

 Node # 1 -2.27656087 -0.02952365 0.539700908 0.372506819 

 Node # 2 -3.30116537 1.235438919 0.712189365 1.160557507 

      

  Hidden Layer # 1  

 Output Layer Node # 1 Node # 2 Bias Node  

 Output Node -1.94365018 -2.87373442 1.832804968  

 

 

The input weights going into the hidden nodes are as 

follows: 27656087.211 w , 02952365.012 w , ,539700908.013 w  

.712189365.0,235438919.1,30116537.3 232221  www   The hidden node weights 

going into the output layer are 94365018.11 w  and 87373442.22 w .  In addition 
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to these weights you have the “bias node” weights 372506819.010 w  and 

160557507.120 w associated with, respectively, the first and second hidden layer nodes 

while the bias node weight for going from the hidden layer to the output layer is 

832804968.10 w .   Mathematically then, the hidden nodes are represented by 
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where the squashing function is the logistic function and  

 

 313212111101 xwxwxwwz    

      = 0.372506819 – 2.27656087RM - 0.02952365AGE + 0.539700908DIS 

 

 323222121202 xwxwxwwz   

                 = 1.160557507 – 3.30116537RM + 1.235438919AGE + 0.712189365DIS. 

 

Given these hidden node values we can get the output node by using the linear squashing 

function resulting in  

 

 22110 hwhww     

                21 87373442.294365018.1832804968.1 hh  . 

 

To score the validation data set we feed the input values of each validation case 

into the hidden node formulas and then get the output score by using the output formula 

immediately above.  This model is highly nonlinear in the weights that must be estimated 

from the training data set and, unfortunately, a conventional method like least squares is 

inappropriate.  Instead a frequently used method for determining the weights of this 

model is the Back Propagation method which we will discuss subsequently.  But before 

we do, let’s consider the two-hidden-layer ANN 3-2-2-1 which is represented 

diagrammatically below.  
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3-2-2-1   ANN 

Architecture 

 

 

 
 

 
 

X1, X2, X3 = three inputs 

h11, h12 = hidden node of First hidden layer 

h21, h22 = hidden node of Second hidden layer 

wij, k, = i, j hidden node weight associated with k-input (or node in layer) 

w11, 0, w12, 0, w21, 0, w22, 0, wΦ0 = “bias” weights 

 

 

Then the two nodes in the first hidden layer are represented by 
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where 

 

 33,1122,1111,110,1111 xwxwxwwz    

and 

  

 33,1222,1211,120,1212 xwxwxwwz  . 

 

The two nodes of the second hidden layer are represented by  
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 122,21111,210,2121 hwhwwz    

and 

  

 122,22111,220,2222 hwhwwz  . 

 

Finally the output layer is given by  

 

 2222110 hwhww   . 

 

For practice, using the above equations, you should try to write out the following 3-2-2-1 

ANN model estimated from the Boston Housing data set: 

 

 
Inter-layer connections weights    

      

  Input Layer 

 
Hidden Layer # 
1 

RM AGE DIS Bias Node 

 Node # 1 -1.39398404 -0.27329631 -0.18890335 -0.24997849 

 Node # 2 -1.67793629 0.952938014 -0.12204585 0.480725851 

      

  Hidden Layer # 1  

 
Hidden Layer # 
2 

Node # 1 Node # 2 Bias Node  

 Node # 1 1.139652823 1.799861432 -1.04346317  

 Node # 2 0.289661956 -0.36803742 -0.56943396  

      

  Hidden Layer # 2  

 Output Layer Node # 1 Node # 2 Bias Node  

 Output Node -1.61382135 -0.0082267 0.147752257  

   

 

 

ANN Classification Models 

 

 The output layer of classification ANN models has as many output nodes as there 

are classification levels.  XLMINER only handles binary classification problems - one 

output node for the “success” (1) and one output node for the “failure” (0).  Below we 

report a 3-2-1 Classification Model based on the Boston Housing data and using the 

binary classification variable CAT.MEDV.  The squashing function for going from the 

input layer to the output layer is the logistic function while the squashing function for the 

output layers is also the logistic function.  Notice below the output layer weights for the 
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two classes are essentially equal in magnitude but opposite in sign which guarantees that 

Pr(output = 1) = 1 – Pr(output = 0) as one would desire of binary probability outcomes.   

 
Inter-layer connections weights    

      

  Input Layer 

 Hidden Layer # 1 RM AGE DIS Bias Node 

 Node # 1 -3.45681 0.662791 0.598812 2.78478 

 Node # 2 -3.21809 1.20055 0.138475 3.0873 

      

  Hidden Layer # 1  

 Output Layer Node # 1 Node # 2 Bias Node  

 1 -3.31916 -3.41982 2.00815  

 0 3.3328 3.38932 -2.00153  

 

This ANN Classification model is written mathematically as follows: 

  

The hidden nodes in the single hidden layer are 
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where  

 

 313212111101 xwxwxwwz    

      = 2.78478 – 3.45681RM + 0.662791AGE + 0.598812DIS 

 

 323222121202 xwxwxwwz   

                 = 3.0873 – 3.21809RM + 1.20055AGE + 0.138475DIS. 

 

Given these hidden node values we can get the binary output nodes using the following 

logistic squashing function resulting in  
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where 

 

 22,111,10,11 hwhwwu            

                 21 41982.331916.300815.2 hh    
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and 

 22,011,00,00 hwhwwu     

                  21 38932.33328.300153.2 hh   

 

Then to score this model in the sense of obtaining a confusion table one has to 

chose a cutoff probability for the “success” class (=1).  Obviously the cutoff probability 

is a tuning parameter in the ANN Classification Model.  That is, the confusion tables for 

the ANN Classification models are dependent on the choice of cutoff probability.   

 

 

Normalization of Input Data and the Back Propagation Method 

 

 It is often recommended that the inputs to an ANN be normalized before training.  

By normalization we mean the following.  Let X denote one of the inputs to the ANN.   

The normalized value of this input, *X , is defined as follows: 

 

   
minmax

min*

XX

XX
X




   , 

 

where the minimum and maximum values of X are represented by minX and maxX , 

respectively.  This normalization converts the original X value to a normalized value *X  

that resides in the [0,1} interval.  It in turn helps the back propagation method better 

determine the weights of the ANN.  

 

 One of the most popular methods for determining the weights of ANN models is 

the so-called back propagation method.   As the title implies the errors of the ANN are 

calculated from the output layer back through the hidden layers of the model.  Given an 

ANN structure, the back propagation method starts out with random draws on the weights 

near zero.  Then the initial observation of the training data set is run through the network 

and, given a prediction problem, the error is determined as err = )ˆ( yy  where y  is the 

first training value of the output variable and ŷ is the ANN predicted value using the 

initially drawn weights.  Using this error, the connection and bias weights are “updated” 

by a fraction of the output error.  Given the updated weights, the second observation of 

the training data set is feed through the network and an error is again determined given 

the second realized value of the output variable.  This error is then used to update the 

weights again with each likewise iteration through the training data set leading to, in 

general, a sequence of smaller and smaller errors and, thus, smaller and smaller revisions 

of the weights until one more training observation leads to a minimal revision in the 

weights.  At this point the final weights of the ANN are determined and the back 

propagation process stops.  Then the resulting ANN model can be used to score 

additional data sets for validation and testing purposes.       
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Avoiding Over-Training of ANN Models – Picking the Right Architecture 

 

 Of course, the training data set fit can be continually improved by making the 

structure of the ANN more and more complex to the point of fitting the training data set 

perfectly.  But this would result in the fitting of not only the signal in the data but the 

noise as well.  This is, of course, called over-training the ANN model.  Unfortunately, 

such over-trained models are quite likely to perform poorly on an independent data set.  

One way to prevent the over-training of an ANN is to try several different architectures 

of increasing complexity and then choose the architecture that provides the best accuracy 

when scoring the validation and test data sets.  That is, the training data set is used to 

determine the weights of the competing ANN architectures vis-à-vis back propagation 

while the validation data set is used to determine the “winning” architecture, the winning 

architecture producing the best validation data set scores.   


