
 1

ARTIFICIAL NEURAL NETWORKS

(ANNs)

Professor Tom Fomby

Department of Economics

Southern Methodist University

March 2008

Artificial Neural Networks (hereafter ANNs) can be used for either prediction or

classification problems. ANNs are based on representations of neural activity in the

brain. The most popular design for ANNs is the so-called multilayer feed-forward

network. Such networks have an input layer, an output layer, and one or more hidden

layers. The following “architectural” diagram represents a 3-2-1 prediction ANN. The

first number, 3, represents the number of inputs in the input layer; the second number, 2,

represents the number of “neurons” or “nodes”, 2, in the hidden layer, and the last

number, 1, represents the number of nodes in the output layer.

3-2-1 ANN Architecture

X1, X2, X3 = three inputs. h1, h2 = hidden node in hidden layer

Φ = output. w10, w20, wΦ0 = “bias” weights, otherwise

w’s first subscript = hidden node number

w’s second subscript = input number

A total of 11 weights to be determined.

X1

X3

h1

h2

 Φ X2

wΦ1 wΦ0

wΦ2

w20

w23

w13

w22

w12

w21

HIDDEN
LAYER

INPUT
LAYER

OUTPUT
LAYER

w11 w10

 2

In the above diagram ,, 21 xx and 3x represent the three inputs, the two hidden

nodes are represented by 1h and 2h , and the output node is represented by  . Moreover

the “weights” connecting the three inputs to the first hidden layer are represented by

,, 1211 ww and 13w where the first subscript, 1, represents linkage to the first node of the

hidden layer, whereas the second subscript represents the input that the weight is

associated with. Similarly, the weights connecting the three inputs to the second node of

the hidden layer are represented by ,, 2221 ww and 23w . In going from the hidden layer to

the output layer the weights for the two hidden nodes are represented by 1w and 2w . In

addition to these “connecting” weights, this ANN also has bias weights w10, w20, and wΦ0.

 In ANNs the weights are applied vis-à-vis so-called “squashing” or

transfer functions, say)(zf . Popular squashing functions include the logistic function,

the arc tangent function, and the linear function. In XLMINER prediction problems the

hidden layer squashing function is the logistic function, whereas the squashing function

for the output layer(s) is the linear squashing function. This is because in prediction

problems the output variable is an interval variable and can potentially range in value

from  to  . In contrast, for classification problems, the output squashing

function(s) is the logistic function because, in classification problems, the output

variables are of the binary form.

To demonstrate the estimated form of a simple 3-2-1 ANN we consider the

Boston Housing data. The output variable is MEDV, the median value of homes in the

given Boston housing district, while the input variables are RM, AGE, and DIS. The

ANN output for a 60% training data set with the inputs being normalized (more about

this later) is reproduced below:

Inter-layer connections weights

 Input Layer

Hidden Layer #
1

RM AGE DIS Bias Node

 Node # 1 -2.27656087 -0.02952365 0.539700908 0.372506819

 Node # 2 -3.30116537 1.235438919 0.712189365 1.160557507

 Hidden Layer # 1

 Output Layer Node # 1 Node # 2 Bias Node

 Output Node -1.94365018 -2.87373442 1.832804968

The input weights going into the hidden nodes are as

follows: 27656087.211 w , 02952365.012 w , ,539700908.013 w

.712189365.0,235438919.1,30116537.3 232221  www The hidden node weights

going into the output layer are 94365018.11 w and 87373442.22 w . In addition

 3

to these weights you have the “bias node” weights 372506819.010 w and

160557507.120 w associated with, respectively, the first and second hidden layer nodes

while the bias node weight for going from the hidden layer to the output layer is

832804968.10 w . Mathematically then, the hidden nodes are represented by

11

1
1 z

e
h




 and
21

1
2 z

e
h






where the squashing function is the logistic function and

 313212111101 xwxwxwwz 

 = 0.372506819 – 2.27656087RM - 0.02952365AGE + 0.539700908DIS

 323222121202 xwxwxwwz 

 = 1.160557507 – 3.30116537RM + 1.235438919AGE + 0.712189365DIS.

Given these hidden node values we can get the output node by using the linear squashing

function resulting in

 22110 hwhww  

 21 87373442.294365018.1832804968.1 hh  .

To score the validation data set we feed the input values of each validation case

into the hidden node formulas and then get the output score by using the output formula

immediately above. This model is highly nonlinear in the weights that must be estimated

from the training data set and, unfortunately, a conventional method like least squares is

inappropriate. Instead a frequently used method for determining the weights of this

model is the Back Propagation method which we will discuss subsequently. But before

we do, let’s consider the two-hidden-layer ANN 3-2-2-1 which is represented

diagrammatically below.

 4

3-2-2-1 ANN

Architecture

X1, X2, X3 = three inputs

h11, h12 = hidden node of First hidden layer

h21, h22 = hidden node of Second hidden layer

wij, k, = i, j hidden node weight associated with k-input (or node in layer)

w11, 0, w12, 0, w21, 0, w22, 0, wΦ0 = “bias” weights

Then the two nodes in the first hidden layer are represented by

111

1
11 z

e
h




 and
121

1
12 z

e
h






where

 33,1122,1111,110,1111 xwxwxwwz 

and

 33,1222,1211,120,1212 xwxwxwwz  .

The two nodes of the second hidden layer are represented by

X1

X3

h11

h12

 Φ X2

h21

h22

w12, 0

wΦ0

w11,1

w12,1

w11,2

w12,2

w12,3

w11,3

wΦ1

wΦ2

w22, 2

w21, 1

w22, 1

w21, 2

w22, 0

INPUT
LAYER

FIRST
HIDDEN
LAYER

OUTPUT
LAYER

SECOND
HIDDEN
LAYER

w11, 0 w21, 0

 5

211

1
21 z

e
h




 and
221

1
22 z

e
h




 where

 122,21111,210,2121 hwhwwz 

and

 122,22111,220,2222 hwhwwz  .

Finally the output layer is given by

 2222110 hwhww   .

For practice, using the above equations, you should try to write out the following 3-2-2-1

ANN model estimated from the Boston Housing data set:

Inter-layer connections weights

 Input Layer

Hidden Layer #
1

RM AGE DIS Bias Node

 Node # 1 -1.39398404 -0.27329631 -0.18890335 -0.24997849

 Node # 2 -1.67793629 0.952938014 -0.12204585 0.480725851

 Hidden Layer # 1

Hidden Layer #
2

Node # 1 Node # 2 Bias Node

 Node # 1 1.139652823 1.799861432 -1.04346317

 Node # 2 0.289661956 -0.36803742 -0.56943396

 Hidden Layer # 2

 Output Layer Node # 1 Node # 2 Bias Node

 Output Node -1.61382135 -0.0082267 0.147752257

ANN Classification Models

 The output layer of classification ANN models has as many output nodes as there

are classification levels. XLMINER only handles binary classification problems - one

output node for the “success” (1) and one output node for the “failure” (0). Below we

report a 3-2-1 Classification Model based on the Boston Housing data and using the

binary classification variable CAT.MEDV. The squashing function for going from the

input layer to the output layer is the logistic function while the squashing function for the

output layers is also the logistic function. Notice below the output layer weights for the

 6

two classes are essentially equal in magnitude but opposite in sign which guarantees that

Pr(output = 1) = 1 – Pr(output = 0) as one would desire of binary probability outcomes.

Inter-layer connections weights

 Input Layer

 Hidden Layer # 1 RM AGE DIS Bias Node

 Node # 1 -3.45681 0.662791 0.598812 2.78478

 Node # 2 -3.21809 1.20055 0.138475 3.0873

 Hidden Layer # 1

 Output Layer Node # 1 Node # 2 Bias Node

 1 -3.31916 -3.41982 2.00815

 0 3.3328 3.38932 -2.00153

This ANN Classification model is written mathematically as follows:

The hidden nodes in the single hidden layer are

11

1
1 z

e
h




 and
21

1
2 z

e
h






where

 313212111101 xwxwxwwz 

 = 2.78478 – 3.45681RM + 0.662791AGE + 0.598812DIS

 323222121202 xwxwxwwz 

 = 3.0873 – 3.21809RM + 1.20055AGE + 0.138475DIS.

Given these hidden node values we can get the binary output nodes using the following

logistic squashing function resulting in

11

1
1 u

e





and

01

1
0 u

e





where

 22,111,10,11 hwhwwu   

 21 41982.331916.300815.2 hh 

 7

and

 22,011,00,00 hwhwwu   

 21 38932.33328.300153.2 hh 

Then to score this model in the sense of obtaining a confusion table one has to

chose a cutoff probability for the “success” class (=1). Obviously the cutoff probability

is a tuning parameter in the ANN Classification Model. That is, the confusion tables for

the ANN Classification models are dependent on the choice of cutoff probability.

Normalization of Input Data and the Back Propagation Method

 It is often recommended that the inputs to an ANN be normalized before training.

By normalization we mean the following. Let X denote one of the inputs to the ANN.

The normalized value of this input, *X , is defined as follows:

minmax

min*

XX

XX
X




 ,

where the minimum and maximum values of X are represented by minX and maxX ,

respectively. This normalization converts the original X value to a normalized value *X

that resides in the [0,1} interval. It in turn helps the back propagation method better

determine the weights of the ANN.

 One of the most popular methods for determining the weights of ANN models is

the so-called back propagation method. As the title implies the errors of the ANN are

calculated from the output layer back through the hidden layers of the model. Given an

ANN structure, the back propagation method starts out with random draws on the weights

near zero. Then the initial observation of the training data set is run through the network

and, given a prediction problem, the error is determined as err =)ˆ(yy  where y is the

first training value of the output variable and ŷ is the ANN predicted value using the

initially drawn weights. Using this error, the connection and bias weights are “updated”

by a fraction of the output error. Given the updated weights, the second observation of

the training data set is feed through the network and an error is again determined given

the second realized value of the output variable. This error is then used to update the

weights again with each likewise iteration through the training data set leading to, in

general, a sequence of smaller and smaller errors and, thus, smaller and smaller revisions

of the weights until one more training observation leads to a minimal revision in the

weights. At this point the final weights of the ANN are determined and the back

propagation process stops. Then the resulting ANN model can be used to score

additional data sets for validation and testing purposes.

 8

Avoiding Over-Training of ANN Models – Picking the Right Architecture

 Of course, the training data set fit can be continually improved by making the

structure of the ANN more and more complex to the point of fitting the training data set

perfectly. But this would result in the fitting of not only the signal in the data but the

noise as well. This is, of course, called over-training the ANN model. Unfortunately,

such over-trained models are quite likely to perform poorly on an independent data set.

One way to prevent the over-training of an ANN is to try several different architectures

of increasing complexity and then choose the architecture that provides the best accuracy

when scoring the validation and test data sets. That is, the training data set is used to

determine the weights of the competing ANN architectures vis-à-vis back propagation

while the validation data set is used to determine the “winning” architecture, the winning

architecture producing the best validation data set scores.

