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Cluster Analysis, sometimes called data segmentation or customer 

segmentation, is an unsupervised learning method.  As you will recall a method is an 

unsupervised learning method if it doesn’t involve prediction or classification.  The major 

purpose of Cluster Analysis is to group together collections of objects (e.g. customers) 

into “clusters” so that the objects in the clusters are “similar.”  One reason a company 

might want to organize its customers into groups is to come to better understand the 

nature of its customers.  Given the delineation of its customers into distinct groups, the 

company could advertise differently to its distinct groups, send different catalogues to its 

distinct groups, and the like. 

 

In terms of building prediction and classification models, cluster analysis can help 

the analyst identify groups of input variables that in turn can lead to different models for 

each group.  This is, of course, assuming that the output relationships vis-à-vis the input 

variables across the groups are not the same.  But then one can always test the 

“poolability” of the models by either conventional hypothesis tests, when considering 

econometric models, or accuracy measures across validation and test data partitions when 

considering machine learning models. 

 

As one will come to understand after working on several clustering projects, 

clustering is an “Art Form.”  It must be practiced with care.  The more experience you 

have in doing cluster analysis, the better you become as a practitioner.  Before beginning 

cluster analysis it is often recommended that the data be normalized first.  Cluster 

analysis based on variables with very different scales of measurement can lead to clusters 

that are not very robust to adding or deleting variables or observations.  In this 

discussion, we will be focusing on clustering only continuous input variables.  The 

clustering of mixed data, some continuous and some categorical, is not considered here as 

it is beyond the scope of this discussion. 

 

Now let us begin.  There are two basic approaches to clustering: 

a) Hierarchical Clustering (Agglomerative Clustering discussed here) 

b) Non-hierarchical clustering (K-means)   
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Hierarchical Clustering 

 

With respect to hierarchical clustering, the final clusters chosen are built in a 

series of steps.  If we start with N objects, each being in its own separate cluster, and then 

combine one of the clusters with another cluster resulting in N – 1 clusters and continue 

to combine clusters into fewer and few clusters with more and more objects in each 

cluster, we are engaging in Agglomerative clustering.  In contrast, if we start with all of 

the objects being in a single cluster and then remove one of the objects to form a second 

cluster and then continue to build more and more clusters with fewer and few objects in 

each cluster until each object is in its own cluster, we are engaging in Divisive 

clustering. The distinction between these two hierarchical methods is represented in the 

below figure taken from the XLMINER help file.   

 

 

 

Figure 1 

 

Hierarchical Clustering: 

Agglomerative versus Divisive Methods 

 

 
 

The above figure is called a dendrogram and represents the fusions or divisions made at 

each successive stage of the analysis.  More formally then, a dendrogram is a tree-like 

diagram that summarizes the process of clustering.     
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Distance Measures Using in Clustering  

 

 In order to build clusters, either agglomeratively or divisively, we need to define 

the distance between two objects (cases), ).,( ,21 ipii xxx  and ),,,( 21 jpjj xxx  and 

eventually between clusters.  Let us first examine the distance between two objects.  If 

the units of measure of the p variables are quite different, it is suggested that the variables 

be first normalized by forming z-scores of the variables as in subtracting the sample 

means from the original variables and dividing the deviations by their respective sample 

standard deviations.  The most often used measure of distance (dissimilarity) between the 

two cases is the Euclidean distance defined by  
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Alternatively, a weighted Euclidean distance can be used and is defined by  
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remaining discussion let us focus on the Euclidean distance measure of distance between 

objects (cases). 

 

Moving to the discussion of the distance between clusters we need to somehow 

define the distance between the objects in one cluster and the objects in another cluster.  

Cluster distances are usually defined in one of three basic ways: Single Linkage 

(Nearest Neighbor), Complete Linkage (Farthest Neighbor), and Average Group 

Linkage.  Each of these cluster distance measures are defined in order below: 

 
 

Single Linkage (Nearest Neighbor) 

 

 The Single Linkage distance between two clusters is defined as the distance 

between the nearest pair of objects in the two clusters (one object in each cluster).  If 

cluster A is the set of objects mAAA ,,, 21   and cluster B is nBBB ,,, 21  , the Single 

Linkage distance between clusters A and B is 

 

 ),( BAD = :{ ijdMin  where object iA  is in cluster A and object jB  is in cluster B 

    and ijd  is the Euclidean distance between iA and jB } 

 

At each stage of hierarchical clustering based on the Single Linkage distance measure, 

the clusters A and B, for which D(A, B) is minimum, are merged.  The Single Linkage 

distance is represented in the XLMINER Help File figure below:    
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Figure 2 

 

Single Linkage Distance 

Between Clusters 

 

 

 

Complete Linkage (Farthest Neighbor) 

 

 The Complete Linkage distance between two clusters is defined as the distance 

between the most distant (farthest) pair of objects in the two clusters (one object in each 

cluster).  If cluster A is the set of objects mAAA ,,, 21   and cluster B is nBBB ,,, 21  ,  the 

Single Linkage distance between clusters A and B is 

 

 ),( BAD = :{ ijdMax  where object iA  is in cluster A and object jB  is in cluster B 

    and ijd  is the Euclidean distance between iA and jB } 

 

At each stage of hierarchical clustering based on the Complete Linkage distance measure, 

the clusters A and B, for which D(A, B) is minimum, are merged.  The Complete Linkage 

distance is represented in the XLMINER Help File figure below:    

 

 

 



 5 

 

Figure 3 

 

Complete Linkage Distance  

Between Clusters  

 

 
 

 

 

Average Linkage 

 

 Under Average Linkage the distance between two clusters is defined to be the 

average of the distances between all pairs of objects, where each pair is made up on one 

object from each cluster.  If cluster A is the set of objects mAAA ,,, 21   and cluster B is

nBBB ,,, 21  , the Average Linkage distance between clusters A and B is 

 

    (   )  
   

     
 

 

where     is the sum of all pairwise distances between cluster A and Cluster B.     and 

   are the sizes of the clusters A and B, respectively.     

 

At each stage of hierarchical clustering based on the Average Linkage distance measure, 

the clusters A and B are merged such that, after merger, the average pairwise distance 

within the newly formed cluster, is minimum.  The Complete Linkage distance is 

represented in the XLMINER Help File figure below: 
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Figure 4 

 

Average Linkage Distance 

Between Clusters 

 

 

 
 

 

 

 

Steps in Agglomerative Clustering 

 

 The steps in Agglomerative Clustering are as follows: 

1. Start with n clusters (each observation = cluster) 

2. The two closest observations are merged into one cluster 

3. At every step, the two clusters that are “closest” to each other are merged.  That 

is, either single observations are added to existing clusters or two exiting clusters 

are merged. 

4. This process continues until all observations are merged.    

 

 This process of agglomeration leads to the construction of a dendrogram.  This is 

a tree-like diagram that summarizes the process of clustering.  For any given number of 

clusters we can determine the records in the clusters by sliding a horizontal line (ruler) 

up and down the dendrogram until the number of vertical intersections of the 

horizontal line equals the number of clusters desired. 
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 Dendrograms are more useful visually when there are a smaller number of cases 

as in the Utilities.xls data set.  However, the agglomerative procedure works for larger 

data sets but is computing intensive in that nxn matrices are the basic building blocks for 

the Agglomerative procedure. 

 

 To demonstrate the construction and interpretation of a dendrogram let’s cluster 

the data contained in the Utilities.xls data set.  This data set consists of observations on 

22 utilities each utility being described by 8 variables.  As noted above we have 3 

different choices of distance between clusters.  They are Single Linkage (Nearest 

Neighbor), Complete Linkage (Farthest Neighbor) and Average Linkage.  Three separate 

dendrograms can be generated for each choice of distance measure.  Let’s look at the 

dendrogram generated by using the Average Linkage measure.  It is reproduced below:  

 

 
 

 

 If we put our horizontal ruler at 4.0 for the maximal distance allowed between 

clusters (as measured by average linkage) we “cut across” 4 vertical lines and thus get 4 

clusters.  They are as follows:{                                }; {             }; { } ; 
{       }.  If we put our horizontal ruler at 3.5 for the maximal distance allowed between 

clusters we “cut across” 7 vertical lines and thus get 7 clusters.  They are as follows: 

{                }; {               } ; {          }; {  };{ };{    };{  }.  The four 

cluster group is constructed by combining the first and second clusters, the third and 

fourth clusters, and the sixth and seventh clusters in the seven cluster group.  You can 

now see why this type of clustering is call hierarchical because the 4 cluster group is 

constructed by combining cluster groupings immediately below it.  As you move up 
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Dendrogram(Average linkage) 
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slowly from the bottom of the dendrogram to the top you move from n clusters to n-l 

clusters to n-2 clusters etc. until all of the observations are contained into one cluster. 

 

 To show how sensitive the choice of clusters is to the choice of distance, consider 

the Single Linkage dendrogram for the Utilities data:  

 

 
 

 

In the case of forming 4 groups, set the maximal allowed distance to be 3.0 in the above 

dendrogram.  Then we get the following 4 clusters:{ } ; {  }; {  }; {    }.  These four 

clusters are quite different from the 4 clusters determined by using the Average Linkage 

dendrogram.  This just goes to show that cluster analysis is an art form and the 

clusters should be interpreted with caution and hopefully only accepted if the 

clusters make sense given the domain-specific knowledge we have concerning the 

utilities under study.     
    

 Also we should note some additional limitations of hierarchical clustering:  

 For very large data sets, can be expensive and slow 

 Makes only one pass through the data.  Therefore, early clustering decisions affect 

the rest of the clustering results. 

 Often has low stability.  That is, adding or subtracting variables or adding or 

dropping observations can affect the groupings substantially. 

 Sensitive to outliers and their treatment 
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Non-hierarchical Clustering (K-means)  

 

 

 The following is hopefully a not too technical discussion of K-means clustering.  

It is a non-hierarchical method in the sense that if one has 2 clusters, say, generated by 

pre-specifying 2 means (centroids) in the K-means algorithm and 3 clusters generated by 

pre-specifying 3 means in the K-means algorithm, then it may be the case that no 

combination of any two clusters of the 3 cluster group can give rise to the 2 cluster 

grouping.  In this sense the K-means algorithm is non-hierarchical.  Let us turn again to 

the Utilities data and use the K-means clustering method to determine 4 clusters based on 

the normalized data.  We use the following choices: 

 

 Normalized data 

 10 Random Starts 

 10 iterations per start 

 Fixed random seed = 12345 

 Number of reported clusters = 4 

 

Then the K-means algorithm in XLMiner for four clusters generated the following 

clusters:  cluster 1 = {                    }; cluster 2 = {          }; cluster 3 = 
{     }; cluster 4 = {                  }.  Again we derive another distinct 4 cluster 

grouping.  Once can then use domain-specific knowledge to determine if this 4 cluster 

grouping makes more or less sense than the 4 group clusters determined by either of the 

choices of cluster distance in the agglomerative approach.   

 

The Steps in the K-means Clustering Approach 

 

 Given a set of observations (          ) where each observation is a d-

dimensional real vector, then K-means clustering aims to partition the n observations into 

K sets (K < n),    {          } so as to minimize the within-cluster sum of squares 

(WCSS): 

 

         ∑ ∑ ‖      ‖
 

     
 
          (1) 

 

where    is the mean of the points in    .  Now minimizing (1) can, in theory, be done by 

the integer programming method but this can be extremely time-consuming.  Instead 

the Lloyd algorithm is more often used.  The steps of the Lloyd algorithm are as follows.  

Given the initial set of K-means   
( )
     

( )
which can be specified randomly or by 

some heuristic, the algorithm proceeds by alternating between two steps: 

 

 Assignment Step: Assign each observation to the cluster with the closest mean 

 

   
( )
  {    ‖       

( )
‖    ‖       

( )
‖ }  for all           . (2) 
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 Update Step: Calculate the new means to be the centroids of the observations in  

             the clusters, i.e. 

 

     
(   )

  
 

| 
 
( )
|
∑        

( )   for          .      (3) 

 

 Repeat the Assignment and Update steps until WCSS (equation (1)) no longer 

changes.  Then the centroids and members of the K clusters are determined.   

 

Note: When using random assignment of the K-means to start the algorithm, one might 

try several starting point K-means and then choose the “best” starting point to be the 

random K-means that produces the smallest WCSS among all of the random starting 

points K-means tried. 

 

 Regardless of the clustering technique used, one should strive to choose clusters 

that are interpretable and make sense given the domain-specific knowledge that we have 

about the problem at hand.   

 

 Review Utilities.xls data 

 

 

 

 

  


