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Multiple Regression and Least Squares 
 
 Consider the following stochastic relationship between the output variable  for 
an i-th individual and the individual’s K input variables : 
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where Kβββ ,,, 10 L are the unknown regression coefficients (parameters) of the model 
and its is assumed that the stochastic errors iε  are independent and identically distributed 
with zero mean and constant variance.  In this setting it is optimal (ala the Gauss-Markov 
theorem) to estimate these parameters by the method of least squares which minimizes 
the following sum of squares errors function 
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over choices of Kβββ ,,, 10 L .  The solution for this problem comes in the form of the 
following normal equations: 
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The “normal” equations represent a system of K non-homogeneous, linear equations in 
the K unknowns Kβββ ,,, 10 L  and can easily be solved by means of matrix algebra 
assuming that none of the input variables can be written as a linear combination of the 
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other input variables (i.e. the absence of perfect multicollinearity).  Let us denote these 
solutions, called the ordinary least squares estimates, .   Kβββ ˆ,,ˆ,ˆ

10 L

 
 The fit of equation (1) is represented by the sum of squared errors (SSE) 
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where iε̂  denotes the residual of the regression fit of the observation on the output 
variable for the i-th individual and the fitted value of the observation of the output of the 
i-th individual is represented by  
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In this setting, the ordinary least squares estimates are optimal with respect to being the 
best of all unbiased, linear estimators of the parameters Kβββ ,,, 10 L . 
 
 A measure of the goodness-of-fit of equation (1) is represented by the so-called 
R-square or coefficient of determination: )( 2R
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regression.  2R  is defined in such a way as to satisfy the inequality .  In words 10 2 ≤≤ R
2R  is the percentage of the variation in that is explained by the input variables     iy
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 As a measure of goodness-of-fit, 2R  is inappropriate for making a choice 
between competing regression models with differing numbers of input variables because 

2R  can be arbitrarily grown to be as close to 1 (a perfect fit) as one would like by simply 
adding more and more input variables to the regression (1).  An alternative measure of 
goodness-of-fit that contains a “penalty” for growing regression models unnecessarily 
large is the so-called adjusted 2R criterion: 
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This measure is not monotonically increasing in the number of input variables but instead 
reaches a point of decline after some large number of input variables has been introduced 
to the regression.  Therefore, when comparing competing regression models by means of 
the 2R  criterion, the preferred regression is the one that possesses the largest 2R . 
 
Exhaustive Search 
 
 One approach for choosing the “best” single regression equation for describing 
the relationship between the output  and the input variables is to search 
over all possible regressions to find the regression that provides the largest 
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2R  goodness-

of-fit measure.  Of course this “exhaustive” (all subsets) search can be a very extensive 
one, especially when K becomes larger than 20.  (The total number of possible subsets is 

given by the combinatorial expression , ⎟⎟
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However, given the fast computational capabilities offered by current day computers, the 
“all subsets” is quite feasible in most cases.   
 
 
Other Popular Subset Selection Algorithms         
 
 Three popular iterative search algorithms for choosing a “best subset” regression 
are forward selection, backward elimination, and stepwise regression.  In contrast to 
all subset searches based on a goodness-of-fit criterion, these algorithms are called 
“directed search” algorithms because they avoid all subset searches by following certain 
rules in conducting the search.  In forward selection we start with no input variables and 
then add one input variable at a time.  The input variable chosen to be added to the 
regression equation is the one which makes the largest contribution to 2R  on top of the 
input variables already in the equation.  Equivalently, the input variable chosen is the 
remaining input variable that has the smallest p-value for its t-statistic.  Of course the 
smaller the p-value, the more significant the input variable is, statistically speaking.  
Moreover, in the forward selection method, once an input variable enters an equation, it 
remains in the equation thereafter.  Of course, a decision must be made as to when the 
contribution to the regression of the best next input variable is so small as to warrant 
stopping the selection process. This is, of course, a subjective decision in many regards.  
In some software programs (e.g. SAS) the user can specify a “cut off” probability 
(frequently chosen to be p = 0.01, 0.05, or 0.10) to stop the forward selection process.  (In 
SAS this cut off probability is labeled “SLENTRY” which stands for “significance level 
entry.”  Therefore, to implement the forward selection process, one must choose the value 
of the “tuning parameter” p that determines the stopping point in the selection process.  
Obviously, the choice of this tuning parameter is quite instrumental in determining the 
final model chosen in the selection process.  The smaller the cutoff probability is chosen 
to be, other things held constant, the simpler the final model will be.  Conversely, the 
larger the cutoff probability, the more complex (extensive) the final model will be. 
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 In backward elimination we start with all of the input variables in the regression 
equation and then at each step we eliminate the input variable that reduces 2R  by the 
least amount when dropping the input variable from the regression. Equivalently, the 
input variable that is eliminated is the one remaining input variable that has the largest p-
value for its t-statistic.  (In SAS this probability value is labeled “SLSTAY.”)  Moreover, 
in the backward elimination method, once an input variable is eliminated from an 
equation, it remains eliminated thereafter. Again, the smaller the cutoff probability is 
chosen to be, other things held constant, the simpler the final model will be when using 
the backward elimination method.  Conversely, the larger the cutoff probability, the more 
complex (extensive) the final model will be. 
 
 Finally, there is the stepwise regression procedure which is like the forward 
selection and backward selection procedures except the “once in, always in” and “once 
out, always out” rules of forward and backward selection are no longer invoked and 
variables can come in and drop out, and even can come back in again until there is no 
remaining variable in the equation that is not statistically significant at the required 
levels.  To affect this procedure you need to choose two “tuning parameters,” namely the 
probability level that determines when an input variable should be admitted to the 
equation (in SAS “SLENTRY”) and when an input variable should be eliminated from 
the equation (in SAS “SLSTAY”).  The entry probability is invariably set higher than the 
exit probability.  Of course, the higher these two probabilities are set in the stepwise 
procedure, the simpler the final model will tend to be, while the lower these two 
probabilities are set, the more complex the final model will tend to be. 
 
 Of course, these four best subset selection procedures need not choose the same 
subset regression given a specific training data set.  Even for a given “architecture” (i.e. 
subset selection method) the choice of the probability value (tuning parameter) is crucial 
in determining the final model chosen for use in prediction. Following the data mining 
approach of using data partitioning and cross-validation to choose between 
competing models, one could generate several subset models generated by different 
selection methods and cut-off values and then choose the subset regression that 
performs the best (i.e. has the best predictive accuracy) in the validation data set.  
Beyond, this choice, however, one could build an ensemble model made up of the 
“better”subset regression models and, hopefully in doing so, have a model that, in a test 
data set, performs even better in the test data set than the very “best” subset model 
determined by the validation data set. 
 
The “Too Small” P-Values Derived by Subset Selection Algorithms     
 
 Another way for controlling the tendency to “over-train” regression models 
chosen by subset selection algorithms is to adjust upward the p-values that the computer 
reports for the chosen variables after the subset selection algorithm has completed its 
task.  The problem with forward selection or backward selection algorithms is that, 
instead of having tested the significance of the variables in the final model only once, the 

 4



final model is derived by a sequence of tests that proceed one at a time from one model 
specification to the next. 
 

To see what distortion this multiple individual significance testing causes in terms 
of the implied Type I error of the testing process, consider the following two-input 
regression model 
 
  iiii xxy εβββ +++= 22110   . 
 
Suppose, in truth that 021 == ββ and that neither input is related to the output variable.  
Furthermore, for simplicity, let us assume that the two input variables,  and , are 
independent (orthogonal) to each other and, thus, the t-statistics of the two inputs are 
independent of each other.  What is the probability of finding one or both t-statistics to be 
statistically significant, that is, greater in absolute value than 1.96?  It is  
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Thus the Type I error associated with the multiple separate t-tests is 0.0975.  It is not 0.05 
as implied by using the individual t-test critical values of 96.1± .  Likewise, when 
starting with C independent candidate input variables, the probability of finding one or 
more of the inputs to be statistically significant at the 5% level is .  This 
probability of course approaches one as C approaches infinity indicating the likelihood of 
finding at least a few significant input variables when searching over a multitude of 
candidate input variables all of which may not be important at all.   

C)95.0(1−

 
 This point of the likelihood of finding at least one significant input variable 
among many potential input variables even if none of them is, in the population, 
significant is demonstrated in the Monte Carlo program Cross Validation.sas that is 
posted on the website for this course.  As a pragmatic approach, one can adjust the final 
p-values obtained from a subset selection search by using the rule-of-thumb suggested by 
Lovell (1983).  (You will find Lovell’s paper posted on the class website under the file 
named Data Mining_Lovell.pdf.)  He suggests multiplying the p-values of the final subset 
model by the factor (C/K) where C represents the original number of candidate input 
variables (not including the intercept term) and K represents the number of input 
variables (not including the intercept term) that remain after the final subset model has 
been selected.  One can see in the Cross Validation.sas program that starts with 20 
spurious input variables if, say a subset of 2 variables is selected in the final model, all 
reported p-values should be multiplied by a factor of 20/2 = 10 which would, more often 
than not, reveal that the retained variables are more than likely spurious in their effects on 
the output variable. 
 
 The above comments equally apply to the “all subset” searches.  Although it can 
be shown that, as the sample size goes to infinity, the model with the highest 2R  will, 
with probability one, be the correct model.  Of course, we rarely have an infinite sized 
sample therefore this “correct model in infinity” property (i.e. consistent model choice) is 
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not always that comforting.  Moreover, even with the all subset selection methods, the 
reported p-values of the final model will need to be adjusted because the computer has 
computed them under the assumption that the final model is the only one that was 
considered in the process of selection.   
 
 All of this said it seems a good practice to use a validation data set to test the 
predictive power of a subset selected regression model and to use the test data set to 
obtain unconditional p-values of its retained variables.    
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