266 9. Additive Models, Trees, and Related Methods

rule predicts class 1 if its probability is greater than Lgy/(Loi + L1o). For
example, if we take Lo, = 10, Ly = 1 then the (true) class 0 and class 1
error rates change to 0.8% and 8.7%.

More ambitiously. we can encourage the model to fit better data in the
class 0 by using weights Loy for the class 0 observations and Lo for the
class 1 observations. As above, we then use the estimated Bayes rule to
predict. This gave error rates of 1.2% and 8.0% in (true) class 0 and class 1.
respectively. We discuss below the issue of unequal losses further, in the
context of tree-based models.

After fitting an additive model, one should check whether the inclusion
of some interactions can significantly improve the fit. This can be done
“manually,” by inserting products of some or all of the significant inputs,
or automatically via the MARS procedure (Section 9.4).

This example uses the additive model in an automatic fashion. As a data
analysis tool, additive models are often used in a more interactive fashion,
adding and dropping terms to determine their effect. By calibrating the
amount of smoothing in terms of df;. one can move seamlessly between
linear models (df; = 1) and partially linear models, where some terms are
modeled more flexibly. See Hastie and Tibshirani (1990) for more details.

9.1.3 Summary

Additive models provide a useful extension of linear models, making them
more flexible while still retaining much of their interpretability. The familiar
tools for modelling and inference in linear models are also available for
additive models, seen for example in Table 9.2. The backfitting procedure
for fitting these models is simple and modular, allowing one to choose a
fitting method appropriate for each input variable. As a result they have
become widely used in the statistical community.

However additive models can have limitations for large data-mining ap-
plications. The backfitting algorithm fits all predictors, which is not feasi-
ble or desirable when a large number are available. The BRUTO procedure
(Hastie and Tibshirani, 1990, Chapter 9) combines backfitting with selec-
tion of inputs, but is not designed for large data-mining problems. For these
problems a forward stagewise approach such as boosting (Chapter 10) is
more effective, and also allows for interactions to be included in the model.

9.2 Tree-Based Methods

9.2.1 Background

Tree-based methods partition the feature space into a set of rectangles, and
then fit a simple model (like a constant) in each one. They are conceptually
simple yet powerful. We first describe a popular method for tree-based

9.2 Tree-Based Methods 267

regression and classification called CART, and later contrast it with C4.5,
a major competitor.

Let’s consider a regression problem with continuous response ¥ and in-
puts X7 and Xs, each taking values in the unit interval. The top left panel
of Figure 9.2 shows a partition of the feature space by lines that are parallel
to the coordinate axes. In each partition element we can model Y with a
different constant. However, there is a problem: although each partitioning
line has a simple description like X; = ¢, some of the resulting regions are
complicated to describe.

To simplify matters, we restrict attention to recursive binary partitions
like that in the top right panel of Figure 9.2. We first split the space into
two regions, and model the response by the mean of Y in each region.
We choose the variable and split-point to achieve the best fit. Then one
or both of these regions are split into two more regions, and this process
is continued, until some stopping rule is applied. For example, in the top
right panel of Figure 9.2, we first split at X; = ¢;. Then the region X; < 1
is split at X = t5 and the region X; > {; is split at X; = t3. Finally, the
region X > t3 is split at Xo = t4. The result of this process is a partition
into the five regions R;, Ra, ... , Rs shown in the figure. The corresponding
regression model predicts Y with a constant ¢, in region R,,, that is,

5

F(X) =Y emI{(X1,X2) € R} (9.9)

m=1

This same model can be represented by the binary tree in the bottom left
panel of Figure 9.2. The full dataset sits at the top of the tree. Observations
satisfying the condition at each junction are assigned to the left branch,
and the others to the right branch. The terminal nodes or leaves of the
tree correspond to the regions Ry, Ro, ..., R5. The bottom right panel of
Figure 9.2 is a perspective plot of the regression surface from this model.
For illustration, we chose the node means ¢; = —=5,¢0 = —7,¢3 = 0,¢4 =
2, cs = 4 to make this plot.

A key advantage of the recursive binary tree is its interpretability. The
feature space partition is fully described by a single tree. With more than
two inputs, partitions like that in the top right panel of Figure 9.2 are
difficult to draw, but the binary tree representation works in the same
way. This representation is also popular among medical scientists, perhaps
because it mimics the way that a doctor thinks. The tree stratifies the
population into strata of high and low outcome, on the basis of patient
characteristics.

9.2.2 Regression Trees

We now turn to the question of how to grow a regression tree. Our data
consists of p inputs and a response, for each of N observations: that is,

268 9. Additive Models, Trees, and Related Methods

R.’:
Ro ety

X2

Ity
ty j——-—] Ry

(5 s

Xl Xl

X154

X2t X; <t3

. (2 < 4
R Rs Ry

Ry Rs

FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitlting, as used in CART.
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splilting. Bottom left panel shows the tree cor-
responding to the partilion in the top right panel, and a perspective plotl of the
prediction surface appears in the bottom right panel.

9.2 Tree-Based Methods 269

(zi,y) for © = 1,2,...,N, with 2; = (z4,%i2,... ,%ip)- The algorithm
needs to automatically decide on the splitting variables and split points,
and also what topology (shape) the tree should have. Suppose first that
we have a partition into M regions Ry, Ra,..., Ry, and we model the
response as a constant ¢, in each region:

M

fley=Y emllwe Rn). (9.10)

m=1

If we adopt as our criterion minimization of the sum of squares > (y; —
f(x;))?, it is easy to see that the best ¢, is just the average of y; in region

R
ém = ave(y;|z; € Ry,). (9.11)

Now finding the best binary partition in terms of minimum sum of squares
is generally computationally infeasible. Hence we proceed with a greedy
algorithm. Starting with all of the data, consider a splitting variable j and
split point s, and define the pair of half-planes

Ri(j,s) = {X|X; < s} and Ry(4,s) = {X|X; > s}. (9.12)

Then we seek the splitting variable j and split point s that solve

min [min Z (yi — ¢1)? + min Z (y; — cz)z]. (9.13)

i ke) 2
i€ Ry (7,5) wi€R2(j,8)

For any choice j and s, the inner minimization is solved by
¢ = ave(y;|z; € Ry(j,s)) and é = ave(y;|z; € Ra2(7,9)). (9.14)

For each splitting variable, the determination of the split point s can
be done very quickly and hence by scanning through all of the inputs,
determination of the best pair (7, s) is feasible.

Having found the best split, we partition the data into the two resulting
regions and repeat the splitting process on each of the two regions. Then
this process is repeated on all of the resulting regions.

How large should we grow the tree? Clearly a very large tree might overfit
the data, while a small tree might not capture the important structure.
Tree size is a tuning parameter governing the model’s complexity, and the
optimal tree size should be adaptively chosen from the data. One approach
would be to split tree nodes only if the decrease in sum-of-squares due to the
split exceeds some threshold. This strategy is too short-sighted, however,
since a seemingly worthless split might lead to a very good split below it.

The preferred strategy is to grow a large tree Tp, stopping the splitting
process only when some minimum node size (say 5) is reached. Then this
large tree is pruned using cost-complezity pruning, which we now describe.

270 9. Additive Models, Trees, and Related Methods

We define a subtree 7' C Ty to be any tree that can be obtained by
pruning Tp, that is, collapsing any number of its internal (non-terminal)
nodes. We index terminal nodes by m, with node m representing region
R,,. Let |T'| denote the number of terminal nodes in 7. Letting

. 1
Cm = 7 E Uiy
m N = Yi
Z{ERm,

Qm (T) — Z (y? = 61?1‘-)21

(9.15)

we define the cost complexity criterion

|7
Ca(T) = Y NmQu(T) + T, (9.16)
m=1

The idea is to find, for each a, the subtree 7, C Ty to minimize C,(T).
The tuning parameter @ > 0 governs the tradeoff between tree size and its
goodness of fit to the data. Large values of a result in smaller trees 7, , and
conversely for smaller values of . As the notation suggests, with « = 0 the
solution is the full tree 7p. We discuss how to adaptively choose a below.

For each a one can show that there is a unique smallest subtree 77, that
minimizes C, (7). To find T,, we use weakest link pruning: we successively
collapse the internal node that produces the smallest per-node increase in
> N Qm (T), and continue until we produce the single-node (root) tree.
This gives a (finite) sequence of subtrees, and one can show this sequence
must contains 7,. See Breiman et al. (1984) or Ripley (1996) for details.
Estimation of « is achieved by five- or tenfold cross-validation: we choose
the value & to minimize the cross-validated sum of squares. Our final tree
is T&.

9.2.3 Classification Trees

If the target is a classification outcome taking values 1,2,..., K, the only
changes needed in the tree algorithm pertain to the criteria for splitting
nodes and pruning the tree. For regression we used the squared-error node
impurity measure @Q,,(7) defined in (9.15), but this is not suitable for
classification. In a node m, representing a region R,, with NV, observations,
let

1
Am* - 1 i — R),
Dk = 7 E (yi = k)
xiERm

the proportion of class k observations in node m. We classify the obser-
vations in node m to class k(m) = argmaxy pmr, the majority class in

9.2 Tree-Based Methods 271

0.5

02 03 04

0.1

0.0

0.0 0.2 0.4 0.6 0.8 1.0
P

FIGURE 9.3. Node impurity measures for two-class classification, as a function
of the proportion p in class 2. Cross-entropy has been scaled to pass through
(0.5,0.5).

node m. Different measures Q,,,(T) of node impurity include the following:

Misclassification error: "i']: > ier., LW # k(m)) = 1 = Prmr(m)-
<o _— B . .
Gini index: Ek;ék' PikPmk’ = Zk:l pmk(] == me.-.)-

: K' . £
Cross-entropy or deviance: >~ " | Pk 10g Prnic-
(9.17)

For two classes, if p is the proportion in the second class, these three mea-
sures are 1 — max(p,1 — p), 2p(1 — p) and —plogp — (1 — p)log (1 — p),
respectively. They are shown in Figure 9.3. All three are similar, but cross-
entropy and the Gini index are differentiable, and hence more amenable to
numerical optimization.

In addition, cross-entropy and the Gini index are more sensitive to changes
in the node probabilities than the misclassification rate. For example, in
a two-class problem with 400 observations in each class (denote this by
(400,400)), suppose one split created nodes (300, 100) and (100, 300), while
the other created nodes (200, 400) and (200, 0). Both splits produce a mis-
classification rate of 0.25, but the second split produces a pure node and is
probably preferable. Both the Gini index and cross-entropy are lower for the
second split. For this reason, either the Gini index or cross-entropy should
be used when growing the tree. To guide cost-complexity pruning, any of
the three measures can be used, but typically it is the misclassification rate.

The Gini index can be interpreted in two interesting ways. Rather than
classify observations to the majority class in the node, we could classify
them to class k with probability p,... Then the training error rate of this
rule in the node is Zk#, PmkPmi—the Gini index. Similarly, if we code
each observation as 1 for class k and zero otherwise, the variance over the

272 9. Additive Models, Trees, and Related Methods

node of this 0-1 response i8 Pyk(l — Pmi). Summing over classes k again
gives the Gini index.

9.2.4 Other Issues
Categorical Predictors

When splitting a predictor having ¢ possible unordered values, there are
29=1 — 1 possible partitions of the ¢ values into two groups, and the com-
putations become prohibitive for large ¢. However, with a 0-1 outcome,
this computation simplifies. We order the predictor classes according to
the proportion falling in outcome class 1. Then we split this predictor as if
it were an ordered predictor. One can show this gives the optimal split, in
terms of squared error or Gini index, among all possible 29! —1 splits. This
result also holds for a quantitative outcome—the categories are ordered by
increasing mean of the outcome (Breiman et al., 1984).

The Loss Matriz

In classification problems, the consequences of misclassifying observations
are more serious in some classes than others. For example it is probably
worse to predict that a person will not have a heart attack when he/she
actually will, than vice versa. To account for this, we define a K x K loss
matrix L, with L, being the loss incurred for classifying a class k obser-
vation as class k’. Typically no loss is incurred for correct classifications,
that is, Lxr = 0 Vk. To incorporate the losses into the modeling process,
we could modify the Gini index to Ek#k, Lk Pk Pk s this would be the
expected loss incurred by the randomized rule. This works for the multi-
class case, but in the two-class case has no effect, since the coefficient of
Dok Pk 18 L + Liprge . For two classes a better approach is to weight the
observations in class k by Ly . This can be used in the multiclass case only
if, as a function of k, Ly doesn’t depend on k’. Observation weighting can
be used with the deviance as well. The effect of observation weighting is to
alter the prior probability on the classes. In a terminal node, the empirical
Bayes rule implies that we classify to class k(m) = argming >, LexPme-

Missing Predictor Values

Suppose our data has some missing predictor values in some or all of the
variables. We might discard any observation with some missing values, but
this could lead to serious depletion of the training set. Alternatively we
might try to fill in (impute) the missing values, with say the mean of that
predictor over the nonmissing observations. For tree-based models, there
are two better approaches. The first is applicable to categorical predictors:
we simply make a new category for “missing.” From this we might dis-
cover that observations with missing values for some measurement behave

9.2 Tree-Based Methods 273

differently than those with nonmissing values. The second more general
approach is the construction of surrogate variables. When considering a
predictor for a split, we use only the observations for which that predictor
is not missing. Having chosen the best (primary) predictor and split point,
we form a list of surrogate predictors and split points. The first surrogate
is the predictor and corresponding split point that best mimics the split of
the training data achieved by the primary split. The second surrogate is
the predictor and corresponding split point that does second best, and so
on. When sending observations down the tree either in the training phase
or during prediction, we use the surrogate splits in order, if the primary
spitting predictor is missing. Surrogate splits exploit correlations between
predictors to try and alleviate the effect of missing data. The higher the cor-
relation between the missing predictor and the other predictors, the smaller
the loss of information due to the missing value. The general problem of
missing data is discussed in Section 9.6,

Why Binary Splits?

Rather than splitting each node into just two groups at each stage (as
above), we might consider multiway splits into more than two groups. While
this can sometimes be useful, it is not a good general strategy. The problem
is that multiway splits fragment the data too quickly, leaving insufficient
data at the next level down. Hence we would want to use such splits only
when needed. Since multiway splits can be achieved by a series of binary
splits, the latter are preferred.

Other Tree Building Procedures

The discussion above focuses on the CART (classification and regression
tree) implementation of trees. The other popular methodology is ID3 and
its later versions, C4.5 and C5.0 (Quinlan, 1993). Early versions of the
program were limited to categorical predictors, and used a top-down rule
with no pruning. With more recent developments, C5.0 has become quite
similar to CART. The most significant feature unique to C5.0 is a scheme
for deriving rule sets. After a tree is grown, the splitting rules that define the
terminal nodes can sometimes be simplified: that is, one or more condition
can be dropped without changing the subset of observations that fall in
the node. We end up with a simplified set of rules defining each terminal
node; these no longer follow a tree structure, but their simplicity might
make them more attractive to the user.

Linear Combination Splits

Rather than restricting splits to be of the form X; < s, one can allow splits
along linear combinations of the form 3" a;X; < s. The weights a; and
split point s are optimized to minimize the relevant criterion (such as the

274 9. Additive Models, Trees, and Related Methods

Gini index). While this can improve the predictive power of the tree, it can
hurt interpretability. Computationally, the discreteness of the split point
search precludes the use of a smooth optimization for the weights. A better
way to incorporate linear combination splits is in the hierarchical mixtures
of experts (HME) model, the topic of Section 9.5.

Instability of Trees

One major problem with trees is their high variance. Often a small change
in the data can result in a very different series of splits. making interpre-
tation somewhat precarious. The major reason for this instability is the
hierarchical nature of the process: the effect of an error in the top split
is propagated down to all of the splits below it. One can alleviate this to
some degree by trying to use a more stable split criterion, but the inherent
instability is not removed. It is the price to be paid for estimating a simple,
tree-based structure from the data. Bagging (Section 8.7) averages many
trees to reduce this variance.

Lack of Smoothness

Another limitation of trees is the lack of smoothness of the prediction sur-
face. as can be seen in the bottom right panel of Figure 9.2. In classification
with 0/1 loss, this doesn’t hurt much, since bias in estimation of the class
probabilities has a limited effect. However, this can degrade performance
in the regression setting, where we would normally expect the underlying
function to be smooth. The MARS procedure, described in Section 9.4,
can be viewed as a modification of CART designed to alleviate this lack of
smoothness.

Difficulty in Capturing Additive Structure

Another problem with trees is their difficulty in modeling additive struc-
ture. In regression, suppose for example that Y = ¢, (X < ;) + e/ (Xs <
t2) + ¢ where ¢ is zero-mean noise. Then a binary tree might make its first
split on X near t;. At the next level down it would have to split both nodes
on Xs at t in order to capture the additive structure. This might happen
with sufficient data, but the model is given no special encouragement to find
such structure. If there were ten rather than two additive effects, it would
take many fortuitous splits to recreate the structure, and the data analyst
would be hard pressed to recognize it in the estimated tree. The “blame”
here can again be attributed to the binary tree structure, which has both
advantages and drawbacks. Again the MARS method (Section 9.4) gives
up this tree structure in order to capture additive structure.

9.2 Tree-Based Methods 275

&
176 21 ¥4 5 3 2 0
Lk] [| |] | | | |
|

.

o .
2 o
g 3
c
Lo
g |1
3 \
s N

=
it — i .’t...
(=] - -, ,H:--___. .
___________________________ ms s T S e love b rmemh—————— e
o
o
T T T T
0 10 20 30 40
Tree Size

FIGURE 9.4. Resulls for spam ezample. The green curve is the tenfold
cross-validation estimate of misclassification rate as a function of tree size, with
+ two standard error bars. The minimum occurs at a tree size with about 17
terminal nodes. The red curve is the test error, which tracks the CV error quite
closely. The cross-validation was indexed by values of a, shown above. The tree
sizes shown below refer to |Tw|, the size of the original tree indezed by .

9.2.5 Spam Ezample (Continued)

We applied the classification tree methodology to the spam example intro-
duced earlier. We used the deviance measure to grow the tree and misclassi-
fication rate to prune it. Figure 9.4 shows the tenfold cross-validation error
rate as a function of the size of the pruned tree, along with £2 standard
errors of the mean, from the ten replications. The test error curve is shown
in red. Note that the cross-validation error rates are indexed by a sequence
of values of & and not tree size; for trees grown in different folds, a value of
« might imply different sizes. The sizes shown at the base of the plot refer
to |7/, the sizes of the pruned original tree.

The error flattens out at around 17 terminal nodes, giving the pruned tree
in Figure 9.5. Of the 13 distinct features chosen by the tree, 11 overlap with
the 16 significant features in the additive model (Table 9.2). The overall
error rate show in Table 9.3 is about 50% higher than for the additive
model in Table 9.1.

Consider the rightmost branches of the tree. We branch to the right
with a spam warning if more than 5.5% of the characters are the $ sign.

276

9. Additive Models, Trees, and Related Methods

t:hg‘:-{l.ﬂ\";;'r\'"
80/117
remove-0.06

spPa ||-l>
4
[

rl*m(wv\}\[l.il(i
-:“..'.-5‘1

/80!1(56

hp<0.405

(‘\

i \
i hp>0.405
!
/ \
- -, — - ‘l '
’f'”'f“’} (\;:p:na} | e .n':.]i
CIRES 267337, 0722
! /
ch!<0.191 george<0.15 CAPAVE <.!h
ch!>0.191 KLUIKL/U 15 ;’ CAPJ\VI:,"Q a0y
/ 5
C':T\:-i-i (:.::,:.-i") spam cmail gap am rp unl
;fswsé'i\ foorza 6109 figrii
H i !
peorge<0.00 "\. CAPAVE<2.7605 1999<0.58 ".l
gm:rgﬁ‘}n.ﬂﬂﬁ ‘J‘ CAPAVE>2.7505 f 1999>0.58
\ |
" \. B \ /
iu ::|.\:".> ‘ g-:u,u':l :-p:unl l :-i:.‘uul l caladl
jooresz w208 fsenzd - eisy 18/109 or
! \)
hp<0.03 | frro{_b,ﬁ(i& ‘1‘
{ hp>0.03 | free>0.065
/
;‘ ‘\ / \1
1t :'D T II (e l) spam
??!42 ar22e f 16“94\
!
Ly\IJ\XQ 10.5

(,APMA‘(;IU)

busine ~:-<.ﬂ 14\'
(l mna \|)

/ business>>0.145
,fzam:-xd\

157:;1;3 L{
receive <O, 12%\
/

mlu{ﬂ 045 5l
receive>0.125 u!u"‘rl:l 045
\ /.

]r:u:.ul] sSpan {-:-::t.u".\‘ Iu':u:nl[
" 197236 2 ,*'-:‘aﬁiq/ 9/72
! \
our<1.2 |\

]')'\I'I\

ourz 1.2

b
el)\"}HIII

FIGURE 9.5. The pruned tree for the spam example. The split variables are

shown in blue on the branches, and the classification is shown in every node.The
numbers under the terminal nodes indicate misclassification rates on the lest data.

TABLE 9.3. Spam data: confusioﬁ rates for the 17-node tree (chosen by
cross-validation) on the test data. Querall error rate is 8.7%

Predicted
True | email spam
email | 57.3%
spam

4.0%
5.3% 33.4%

9.2 Tree-Based Methods 277

However, if in addition the phrase hp occurs frequently, then this is likely
to be company business and we classify as email. All of the 22 cases in
the test set satisfying these criteria were correctly classified. If the second
condition is not met, and in addition the average length of repeated capital
letters CAPAVE is larger than 2.9, then we classify as spam. Of the 227 test
cases, only seven were misclassified.

In medical classification problems, the terms sensitivity and specificity
are used to characterize a rule. They are defined as follows:

Sensitivity: probability of predicting disease given true state is disease.

Specificity: probability of predicting non-disease given true state is non-
disease.

If we think of spam and email as presence and absence of disease, respec-
tively, then from Table 9.3 we have

T 33.4
S(i?lS'LtEU‘lty = 100 x m = 863%
57.3
Specificity = 100 X —————— = 93.4%.
pecificity X 5210 0

In this analysis we have used equal losses. As before let L. be the
loss associated with predicting a class k& object as class k’. By varying the
relative sizes of the losses Lo; and Ly, we increase the sensitivity and
decrease the specificity of the rule, or vice versa. In this example, we want
to avoid marking good email as spam, and thus we want the specificity to
be very high. We can achieve this by setting Lo, > 1 say, with Lig = 1.
The Bayes’ rule in each terminal node classifies to class 1 (spam) if the
proportion of spam is > Ljo/(L1o + Lo1), and class zero otherwise. The
receiver operating characteristic curve (ROC) is a commonly used summary
for assessing the tradeofl between sensitivity and specificity. It is a plot of
the sensitivity versus specificity as we vary the parameters of a classification
rule. Varying the loss Lg; between 0.1 and 10, and applying Bayes’ rule to
the 17-node tree selected in Figure 9.4, produced the ROC curve shown in
Figure 9.6. We see that in order to achieve a specificity of close to 100%,
the sensitivity has to drop to about 50%. The area under the curve is a
commonly used quantitative summary; extending the curve linearly in each
direction so that it is defined over [0, 100], the area is approximately 0.95.
For comparison, we have included the ROC curve for the GAM model fit
to these data in Section 9.2; it gives a better classification rule for any loss,
with an area of 0.98.

Rather than just modifying the Bayes rule in the nodes, it is better to
take full account of the unequal losses in growing the tree, as was done
in Section 9.2. With just two classes 0 and 1, losses may be incorporated
into the tree-growing process by using weight Ly ;-4 for an observation in

278 9. Additive Models, Trees, and Related Methods

o _
(+0]
@ _
i
. \
& —— Tree (0.95) <
8 ——— GAM (0.98)
§ ——— Weighted Tree (0.90)
® 4
D L
&
o
& | .
o
T [I] I I
0.0 0.2 0.4 0.6 0.8 1.0

Specificity

FIGURE 9.6. ROC curves for the classification rules fit to the spam data. Curves
that are closer to the northeast corner represent better classifiers. In this case the
GAM classifier dominates the trees. The weighted tree achieves better sensitivity
for higher specificity than the unweighted tree. The numbers in the legend repre-
sent the area under the curve.

9.3 PRIM—Bump Hunting 279

class k. Here we chose Lo, = 5, L1gp = 1 and fit the same size tree as before
(|To| = 17). This tree has higher sensitivity at high values of the specificity
than the original tree, but does more poorly at the other extreme. Its top
few splits are the same as the original tree, and then it departs from it.
For this application the tree grown using Loy = 5 is clearly better than the
original tree.

9.3 PRIM—Bump Hunting

Tree-based methods (for regression) partition the feature space into box-
shaped regions, to try to make the response averages in each box as differ-
ent as possible. The splitting rules defining the boxes are related to each
through a binary tree, facilitating their interpretation.

The patient rule induction method (PRIM) also finds boxes in the feature
space, but seeks boxes in which the response average is high. Hence it looks
for maxima in the target function, an exercise known as bump hunting. (If
minima rather than maxima are desired, one simply works with the negative
response values.)

PRIM also differs from tree-based partitioning methods in that the box
definitions are not described by a binary tree. This makes interpretation of
the collection of rules more difficult; however, by removing the binary tree
constraint, the individual rules are often simpler.

The main box construction method in PRIM works from the top down,
starting with a box containing all of the data. The box is compressed along
one face by a small amount, and the observations then falling outside the
box are peeled off. The face chosen for compression is the one resulting in
the largest box mean, after the compression is performed. Then the process
is repeated, stopping when the current box contains some minimum number
of data points.

This process is illustrated in Figure 9.7. There are 200 data points uni-
formly distributed over the unit square. The color-coded plot indicates the
response Y taking the value 1 (red) when 0.5 < X; < 0.8 and 0.4 < X, <
0.6. and zero (blue) otherwise. The panels shows the successive boxes found
by the top-down peeling procedure, peeling off a proportion o = 0.1 of the
remaining data points at each stage.

Figure 9.8 shows the mean of the response values in the box, as the box
is compressed.

After the top-down sequence is computed, PRIM reverses the process,
expanding along any edge, if such an expansion increases the box mean.
This is called pasting. Since the top-down procedure is greedy at each step,
such an expansion is often possible.

