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 The basic idea of regression and classification trees is build a step function 

characterization of the relationship between a set of input variables and a target output 

variable.  This is done by partitioning the input space into rectangular regions with the 

predicted value of the output variable being the average of the output values in each 

region.  In purpose, it is hoped that the chosen step function will characterize (predict) 

well the output values in independent data sets.   

 

 Let us be more specific about the step function characterization of output values.  

Let ),( ii yx , denote observations on the p input variables ),,,( 21 ipiii xxx x and 

corresponding output values iy , .,,2,1 Ni    Assume that we have M distinct regions 

MRRR ,,, 21   that partition the input space ),,,( 21 ipiii xxx x .  Regression 

(Classification) trees model the response y  as a constant mc in each region: 
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If we adopt the criterion of minimizing the sum-of-squared errors 
i

ii fy 2))(( x , it 

turns out that the best estimate of mc in each region is ).|(ˆ
miim Ryavec  x   Finding 

the best partition of the input space is accomplished by the method of recursive binary 

partitioning.  Starting with all of the data, consider a splitting (input) variable j and split 

point s, and define the pair of half-planes 

 

  )|{),(1 sxsjR j  x  and }|{),(2 sxsjR j  x . 

 

Then we seek the splitting variable j and split point s that solve the following 

minimization problem: 
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For any choice of j and s, the inner minimization is solved by 

 

 )),(|(ˆ
11 sjRyavec ii  x  and )),(|(ˆ

22 sjRyavec ii  x  . 
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Having found the best split, we partition the input data into the two resulting 

regions and search separately over these two regions for a best splitting variable j and 

splitting point s that would produce 3 regions whose average output values produce the 

greatest possible reduction in the sum of squared errors over the three regions.  Then, 

given these three regions, we search separately over these three regions for a best 

splitting variable j and splitting point s whose average output values produce the greatest 

possible reduction in the sum of squared errors over the four regions.  This process 

continues until a “full” tree is built.  This process is called the recursive binary 

partitioning process. 

 

[Some pictures in here depicting the recursive search procedure.] 

 

Pruning    

 

The idea behind pruning is that a very large tree is likely to overfit the training 

data set in the sense that if a “full” tree is used to score an independent data set, say the 

validation data set, its accuracy would be much attenuated.  There are essentially two 

ways of pruning a full tree:  (1) One can use the validation data set to score various sized 

trees and thereby choose the “pruned” tree (i.e. a simplified tree with fewer decision 

nodes than the full tree) that produces the greatest accuracy of prediction or classification 

in the validation data set.  (2)  One can limit the growth of the tree by choosing a tuning 

parameter that can potentially limit the size of a grown tree.  Two popular tuning 

parameters are the minimum number of cases that are required of all final nodes 

and the maximum number of decision nodes that are allowed in building the tree.  

XLMINER supports the use of either of these tuning parameters.  Here we will focus on 

the use of the minimum number of cases that are required of all final nodes.  We will 

represent this minimal number by the parameter tn  .   


