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 There are several tools that practitioners frequently use to evaluate the 

performances of competing classification methods.  The particular tools used depend on 

how much information the evaluator has concerning the consequences (gains and loses) 

associated with using classification methods.  We will pursue our discussion assuming, 

first, that we have complete information on these consequences, then proceed to discuss 

methods of evaluation based on less and less information concerning consequences as we 

proceed through our discussion.  But first we need to define some concepts that relate to 

characterizing the consequences of making choices concerning classifications.   

 

1. Binary Choice Problems and Decision Tables 

     

 In the following discussion we will be focusing exclusively on the evaluation of 

binary classifiers.  That is, we will be interested in evaluating the performances of 

classifiers that deal with predicting one of two possible outcomes: 1 = a “success” or 0 = 

a “failure.”  Of course, one should not take the terms “success” too literally.  For 

example, a success could be the graduation of a high school student versus a failure when 

a student does not graduate from high school.  In contrast, a “success” could be the 

default of a person on his/her credit card debt versus a “failure” of a person never 

defaulting on his /her credit card debt.  Usually the event of primary interest to the 

investigator is defined as the “success” event.  

 Given this binary classification problem, we might use the following Outcome 

Table to specify the possible outcomes of a given prediction. 
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BINARY CHOICE 

OUTCOME TABLE 

 

 
Actual Value 

1 0 

Predicted 
value 

1 
True 

Positive 

False 
Positive 
(Type I 
Error) 

0 

False 
Negative 
(Type II 
Error) 

True 
Negative 

 

 

Here we use the somewhat more neutral terms of positive (=1) and negative (=0).  From 

the above Outcome Table we can see that there are four possible outcomes that go along 

with a binary prediction. You predict a 1 and a 1 actually occurs (a true positive); you 

predict a  0 and a 0 actually occurs (a true negative); you predict a 0 and a 1 actually 

occurs (a false negative); and, finally, you predict a 1 and a 0 actually occurs (a false 

positive).  If we take the null hypothesis to be the negative (0) case, we can view the false 

positive outcome as being a Type I error in the statistical sense.  On the other hand, if we 

take the alternative hypothesis to be the positive (1) case, we can view the false negative 

outcome as being a Type II error in the statistical sense.  Note this labeling in the above 

outcome table.   

 Corresponding to this Outcome Table, we have a so-called Cost/Gain Table 

represented below: 
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COST/GAIN 

TABLE 

 

 
Actual Value 

1 0 

Predicted 
value 

1 P11 P10 

0 P01 P00 

 

 

Here we use the more comprehensive term “payoff” to represent a gain (a positive 

monetary outcome) as well as a cost (a negative monetary outcome).  That is, the ijP ’s in 

the Cost/Gain table can either be positive or negative, depending on the actual problem 

being investigated.  Then 11P  represents the payoff arising from a correct classification of 

a 1; 00P  represents the payoff arising from a correct classification of a 0; 01P  represents 

the payoff (usually negative) arising from incorrectly classifying a 1 as a 0; and, finally, 

10P  represents the payoff (again usually negative) at incorrectly classifying a 0 as a 1. 

 Now let us consider how we might go about comparing the predictive capabilities 

of competing classifiers which have been built on a training data set.  Suppose there are 

N cases in the validation data set.  Furthermore, suppose that we “score” the validation 

data set using a particular classifier and we get the following outcomes represented in the 

below, so-called, “Confusion” Table: 
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CONFUSION 

TABLE 

 

 
Actual Value 

1 0 

Predicted 
value 

1 n11 n10 

0 n01 n00 

 

In this table 11n  represents the number of cases that the classifier correctly classified as 

1’s in the validation data; 00n  represents the number of validation cases that the classifier 

correctly classified as a 0; 01n  represents the number of validation cases that were 1’s but 

were incorrectly classified as 0’s; and finally, 10n  represents the number of validation 

cases that were 0’s but incorrectly classified as 1’s.  Of course these outcomes are 

exhaustive and we have 10010011 nnnnN  . 

 

2. Classification Accuracy Measures 

 

 Now consider the following definitions of various Classification Accuracy 

Measures: 

 

 ACC = Accuracy Rate 

           = proportion of the total number of predictions that were correct  

          = 
N

nn 0011   

 ERR = Error Rate (1 – Accuracy Rate) 

           = proportion of the total number of predictions that were incorrect   
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            = 
N

nn 1001   

 TPR = Total Positive Rate (Sensitivity) 

          = proportion of positive (1) cases that were correctly classified 

          = 
0111

11

nn

n


 

 FNR = False Negative Rate (1 – Sensitivity) 

          = proportion of positive (1) cases that were incorrectly classified as negative 

  (0)  

                    = 
0111

01

nn

n


 

 TNR = Total Negative Rate (Specificity) 

           = proportion of negative (0) cases that were classified correctly   

           = 
1000

00

nn

n


  

 FPR = False Positive Rate (1 – Specificity)  

              = proportion of negative (0) cases that were incorrectly classified as positive 

  (1)  

         = 
1000

10

nn

n


 

 P = Precision 

     = proportion of the predicted positive (1) cases that were correct 

     =  
1011

11

nn

n


  

 

3. The Naïve Classifier 

 

 In discussions of classifier performances there are often frequent references to the 

so-called Naïve Classifier.  The Naïve Classifier is that classifier that one would use if 

one had no information available on the input variables associated with the individual 

and, instead, only had information on the proportion of successes (and hence proportion 
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of failures) in the validation data set.  For example, suppose that the proportion of 

successes in a validation data set is 20%.  Then, conceptually, given an individual and a 

hat with five poker chips in it, one that is red and four that are blue, we could, in the 

absence of any available information on individuals, use the following naïve 

classification rule: If we draw a red chip from the hat, the individual is predicted to be a 

success (=1); otherwise the individual is predicted to be a failure (= 0).  Obviously this is 

a very crude classifier.  In contrast, if we have some useful information on the individual 

and if this information is adeptly incorporated into a classifier, we should do a better job 

in classifying individuals in a validation data set than the Naïve Classifier would do.  

Therefore, in the Cumulative Gain Charts, Lift Charts, and ROC curves you will 

study later, you will often see the Naïve Classifier’s performance serving a benchmark 

to beat.  If the structured classifiers don’t, in some sense, outperform the Naïve 

Classifier, then the construction of new and more efficient classifiers should be 

undertaken. 

 Another way of envisioning the Naïve Classifier is to take the majority 

classification of the data and apply it in the scoring of all of the new data.  For example, 

in a binary choice problem with the “failures” being in the majority (the 0s if you will) 

one could classify all new cases simply as being failures.  In so doing, this would 

guarantee that all failures in the new data set would be classified correctly but, on the 

other hand, all successes would necessarily be misclassified.  The error rate of the Naïve 

Classifier would then be equal to the proportion of successes that exist in the new data 

set.  Correspondingly, the accuracy rate of the Naïve Classifier would be equal to the 

number of failures in the new data set.   

 Now if one is comparing potential classifiers with the Naïve Classifier and the 

population proportion of successes in the validation data set is 1p , then the expected 

Naïve Classifier’s accuracy rate can be computed as  

   
N

nEnE
ACCNAIVE

)()( 0011 
  

         
N

ppNppN 0011 
  

         2

1

2

1

2

0

2

1 )1( pppp   
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         2

11 221 pp  . 

In calculating the above formula we have calculated the expected number of correct 

classifications of successes as 1111)( ppNnE   and the expected number of correct 

classifications of failures as 0000)( ppNnE  , where 10 1 pp   is the probability of 

classifying an individual as a failure.  In the calculations of these expectations we have 

assumed that the actual classification of an individual is independent of the naïve 

classification of the individual.  Then 2

111 ppp   represents the probability that any one 

success will be correctly classified as a success and 2

000 ppp  represents the 

probability that any one failure will be correctly classified as a failure.  Given these 

considerations, the expected accuracy rate of the Naïve Classifier is plotted in the graph 

below. 

EXPECTED ACCURACY RATE 

OF THE NAÏVE CLASSIFIER 

 

 

Then the expected benchmark accuracy rate for comparison with other more 

sophisticated classifiers is given by the formula 2

11 221 pp  .  Obviously, the Naïve 

Classifier’s expected accuracy rate is at a minimum when 5.01 p .  In contrast, when the 

0 0.5 

1 

ACCNAIVE 

P1 = proportion of successes 

P1 

0.5 • 

• • 

• 

• 

1 

(1,1) 

1-2p1+2p1
2 
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proportion of successes becomes more “extreme” 0( 1 p  or )11 p  the Naïve 

Classifier’s expected accuracy rate becomes more stringent and tough to beat. 

 Of course, one rarely has information on the population proportion of successes

1p .  Thus, one has to rely on a consistent estimate of it.  One such consistent estimate is 

the sample proportion of successes in the validation data set.  Let this sample proportion 

be denoted by 1p̂ .  Then a consistent estimate of the expected accuracy rate of the Naïve 

Classifier is
2

11
ˆ2ˆ21ˆ ppCCA NAIVE  .  Now, in comparisons of the accuracy rate of a 

proposed classifier obtained from the validation data set, say, PROPOSEDACC , and that of 

the Naïve Classifier, NAIVECCA ˆ , we would initially prefer the proposed classifier if 

NAIVEPROPOSED CCAACC ˆ  and not, otherwise. 

 However, even if the accuracy rate of the proposed classifier is better than the 

accuracy rate of the Naïve Classifier in the validation data set, we might ask the 

following question: “Is the accuracy rate of the proposed classifier statistically superior to 

that of the Naïve Classifier?”  This question can be answered by conducting a one-tailed 

test of proportions using the following N(0,1) statistic 

   

N

CCACCA

CCAACC
Z

NAIVENAIVE

NAIVEPROPOSED

)ˆ1(ˆ

ˆ




    . 

The null hypothesis of the test is  

 0H : The Accuracy Rate of the Proposed Classifier Is No 

          Better than the Accuracy Rate of the Naïve Classifier 

versus the alternative hypothesis that  

 1H : The Accuracy Rate of the Proposed Classifier Is Statistically 

                    Better than the Accuracy Rate of the Naïve Classifier. 

If the Z statistic is positive and if its right-tail p-value is less than a pre-specified size, say

% , one would reject the null hypothesis and accept the alternative hypothesis that the 

proposed classifier is statistically superior to the Naïve Classifier.  Otherwise we would 

accept the null hypothesis that the two classifiers are not statistically distinguishable. 
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 For example, suppose that the validation data set contains N = 200 cases and that 

the number of successes in the validation data set is 40.  Then the proportion of successes 

is 20.0ˆ
1 p .  It follows that 68.0)2.0(2)2.0(21ˆ 2 NAIVECCA .  Furthermore, assume 

that, in the validation data set 76.0PROPOSEDACC .  The corresponding Z-statistic then is 

     425.2

200

)68.01(68.0

68.076.0





Z . 

The corresponding right-tail probability for this statistic is p = 0.008 and the difference is 

highly significant.  Thus the proposed classifier is statistically superior to the Naïve 

Classifier in the examined validation data set.   

 

4. Evaluating Classification Methods and Choosing Optimal Cut-off Probabilities 

 

 Let us now consider the following four scenarios concerning varying degrees of 

ignorance with respect to Cost/Gain information, all for the purpose of distinguishing 

between good and bad classifiers and choosing optimal cut-off probabilities for classifiers 

based on scoring validation data sets.  That is, the following cases are intended to help us 

come to understand the crucial role that the Payoff structure of a classification “game” 

plays in distinguishing between competing classifiers and between competing cutoff 

probabilities for a given classifier, all based on the scoring of validation data sets.    

 

 Case I: The Payoffs in the Cost/Gain Table are Completely Known. 

 Case II: The Costs (Payoffs) of Misclassification are Equal while the 

Payoffs associated with Correct Classifications are assumed to be zero.   

 Case III: The Ratio of the Costs (Payoffs) of Misclassification is Known 

while the Payoffs associated with Correct Classifications are assumed to 

be zero.   

 Case IV: The Payoffs in the Cost/Gain Table are Completely Unknown. 

 

What we must keep in mind at this point is that classifiers depend upon the 
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choice of a “tuning” parameter, the so-called “cut-off” probability of the classifier.  As 

we will see, classifiers, given the attributes (inputs) of an individual, generate a 

probability of “success” for that individual.  If that probability is greater than the cut-off 

probability, the individual is classified as a 1 (success); otherwise, the individual is 

classified as a 0 (failure).  Importantly, the payoff-performance of classifiers is critically 

dependent on the choice of the cutoff probability. 

 Let   (
   

   
)  be the ratio of the payoff (cost) of incorrectly classifying a success 

as a failure,     , to the payoff (cost) of incorrectly classifying a failure as a success,    .  

Then given the payoffs of correct classification     and    , the greater (less) the value 

of R, the lower (higher) the optimal cut-off probability should be.  Certainly the cut-off 

probability of 0.5 is not sacrosanct.  It needs to be determined on a case-by-case taking 

into account the available information concerning the costs and gains of classification 

decisions.  In this sense, the cut-off probability is a tuning parameter for classifiers.    

 

Case I: The Payoffs in the Cost/Gain Table are Completely Known        

  

 In this case it is quite easy to evaluate the performance of classifiers when scored 

on the validation data set.  All we have to do is calculate the total payoff (P) associated 

with scoring the classifier on the validation data set,  

  0000010110101111 PnPnPnPnP   . 

With respect to a given classifier, the optimal cut-off probability is that cut-off 

probability that produces the largest total payoff for the classifier in the validation data 

set.  With respect to the comparison of classifiers, one would prefer the classifier whose 

optimal cut-off probability produced the largest total payoff in the validation data set 

among the competing classifiers using their own optimal cut-off probabilities.   

 

Case II: The Costs (Payoffs) of Misclassification are Equal while the Payoffs 

associated with Correct Classifications are assumed to be zero.   
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 Now consider the case where the costs of misclassification are equal while the 

payoffs associated with correct classifications are assumed to be zero.  In this case, 

           and            ̅, say.  Therefore, the Payoff function is of the form 

                       ̅  (        )    ̅  (        )   .         (1) 

Then the misclassification rate is the only thing that matters in this case when comparing 

the performance of two competing classifiers.  The classifier that has the smallest sum of 

false positives and false negatives (        ) is the better classifier.  Equivalently, in 

this case, the classifier with the smallest error rate,    (        )  , (and hence 

the largest accuracy rate     (        )   ) is the better classifier. 

 Now suppose, instead of comparing the performance of two competing classifiers, 

we are interested in comparing the performance of a given classifier with different cutoff 

probabilities  Invariably, when choosing a classifier based solely on maximizing the 

accuracy rate (or equivalently minimizing the error rate), the cut-off probability that 

should be used is 0.5.  There is no advantage is deviating from 0.5 since the costs of the 

misclassifications are equal to each other, PPP  1001  and   = 1.   Since the payoffs of 

correct classification are assumed to be zero and the costs of misclassification are equal, 

the manipulation of the cutoff probability to trade off false positives with false negatives 

and vice versa is a totally offsetting exercise.  Therefore, in computer programs that, 

by default, only use a 0.5 cut-off probability and only report confusion tables and 

accuracy and error rates, it is implicitly being assumed that the Case II 

circumstances (zero payoffs from correct classification and symmetric costs of 

misclassification) are applicable in the case under investigation.       

 

Case III: The Ratio of the Costs (Payoffs) of Misclassification are Known while the 

Payoffs associated with Correct Classifications are assumed to be zero  

 

 In this case we assume that the ratio of the misclassification payoffs, say 

)/( 1001 PPR   , is known while the payoffs of correct classifications are assumed to be 

zero.  Therefore, the payoff function becomes  

         (          ) .     (2) 
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Assuming an unknown      , we can see that a good classifier is one that minimizes 

the weighted average of the misclassifications,  (          ), or equivalently, 

minimizes the weighted error rate, ERR(weighted) = (          )  .  

 

Case IV: The Payoffs in the Cost/Gain Table are All Unknown     

 

 Assume that the payoffs in the Cost/Gain table are all unknown.  In this case 

specific payoffs cannot be computed over the validation data set.  One pragmatic thing to 

do is simply to revert to choosing between classifiers using a 0.5 cut-off probability based 

solely on the Accuracy Rate (ACC) previously defined.  Then the classifier that produces 

the largest accuracy rate, when scored over the validation data set, is declared the winner.  

The greater the accuracy rate of the classifier, the better the classifier.  Also, in this case 

of no information, we can consider additional performance tools for evaluating 

classifiers, namely, 

 Cumulative Gains Charts 

 Lift Charts 

 The ROC Space and ROC Curves 

For further discussion of these evaluation tools, see the following pdf files posted on the 

class website: 

 Lift Charts.pdf 

 ROC.pdf  

The above two pdf files were obtained from the website for the Department of Computer 

Science, University of Regina, Regina, Saskatchewan, Canada and their computer science 

class CS 831.  (Authors: Howard Hamilton, Ergun Gurak, Leah Findlater, and Wayne 

Olive,  July 2003) http://www2.cs.uregina.ca/~dbd/cs831/ 

   

5. The Evaluation and Utilization of Classifiers in the Typical Target Marketing 

Scenario  

 

 In this section we are going to consider the evaluation and proper utilization of a 

classifier in the situation one might describe as a target marketing problem.  Suppose 

http://www2.cs.uregina.ca/~dbd/cs831/
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that we work for a catalog sales company that wants to maximize the return it gets by 

sending customers product catalogs in the anticipation of getting orders from them.  

When considering the evaluation of competing classifiers over a validation data set, we 

are, in this case, more concerned with the total profits we can generate given a sometimes 

limited budget for producing and mailing the catalogs.  

 To make matters concrete, let us assume that, conditional on purchase, our 

customers spend an average of R (revenue) dollars with us.  Moreover, assume that the 

cost of producing and mailing our catalogs per customer is C dollars.  Then the Cost/Gain 

(Profit) Table is given by (here we assume R > C): 

 

COST/GAIN TABLE 

FOR TARGET MARKETING CASE 

(1 = Purchase, 0 = No Purchase) 

 
Actual Value 

1 0 

Predicted 
value 

1 R-C -C 

0 0 0 

 

 

Notice that we make the assumption that the cost of missing a potential customer is equal 

to 0. 

Given the above profit matrix we can evaluate competing classifiers as well as 

“tune” the cut-off probability of a given classifier by simply calculating the cumulative 

profits generated over the validation data set in the following way: (1) Take the 

probabilities of purchase (=success) produced by the classifier for the individuals in the 

validation data set and then sort these individuals from the highest probability of 

purchase to the lowest probability of purchase.  Then using these sorted individuals, score 

them cumulatively vis-à-vis the above profit matrix.  An idealized version of the scored 

cumulative profit curve might look something like the below graph: 
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CUMULATIVE PROFIT CURVE 

 SCORED ON VALIDATION DATA SET 

 

 

This is, of course, the cumulative profit graph for a given classifier as the individuals are 

sorted from the highest probability of success to the lowest probability of success.  As the 

highest probability individuals are successively chosen, their prevailing successes in the 

validation data set lead to a rapid accumulation of profits for the company.  However, 

there is a point of diminishing returns as the lower probability individuals will begin to 

“fail” and not purchase from the catalogue.  Then for choosing an optimal cut-off 

probability for the given classifier, we should choose as the cut-off probability the 

probability that maximizes the cumulative (total) profit of the classifier in the validation 

data set. 

 Of course, this process can be repeated for other classifiers as well.  Then the 

overall best classifier among a set of competing classifiers is the one that, while using its 

optimal cut-off probability, produces the greatest cumulative profit among the competing 

classifiers over the validation data set.  We then have our best classifier for the Target 

Marketing problem.  

1 

• 

Cutoffopt 

∑π 

πmax 

Probabilities of sorted 
individuals (high to low)  
(high to low) 

∑π = Cumulative Profit 
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Using a Classifier to Score a New Data Set of Potential Customers      

 

 Finally, let us consider the target marketing problem where we have M new 

potential customers that we are considering sending our catalogs to.  What do we do?  

Well, we take what we believe to be our best known classifier and its optimal cut-off 

probability and we generate the probabilities of purchase for new potential customers and 

then we sort them from the highest probability of purchase to the lowest probability of 

purchase.  Before we proceed in our solicitation we need to consider two possible cases: 

 Case 1: Assume we know, from previous sales experience, the average revenue 

we can expect from a purchase, say R.  Also assume the cost of producing and 

mailing each catalog is C.  Refer to the Cost/Gain Table for the Target Marketing 

Case above.   

 Case 2: Assume, from previous sales records, we are able to specify (estimate) 

an expected expenditures equation for purchasers that is a function of the 

purchasers’ attributes (input variables).  Also assume the cost of producing and 

mailing each catalog is C.  This Case is sometimes called the Two-Part Target 

Marketing problem.   

 

Case 1: Average Revenue Per Purchase is Known 

 

 Let us first consider Case 1.  From our previous exercise we know which 

classifier produces the maximum cumulative profit in the validation data set.  We also 

know the optimal cut-off probability that generated the maximum profit.  Assuming that 

the chosen classifier will do just as well in scoring the new data set as was done in 

scoring the validation data set, we score the probabilities of purchase of the individuals in 

the new data set and order them from highest probability of purchase to lowest 

probability of purchase.  Then we entertain the possibility of advertizing to all individuals 

whose probability of purchase is equal to are greater than the optimal cut-off probability 

determined in the validation data set for the classifier.  Let that number of people be 

denoted by          . 
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 Of course being able to send catalogs to the entire          sorted-set of people 

depends on the size of the available advertising budget.  If the advertising budget exceeds 

the cost of sending out catalogs to all           people, i.e. Advertising Budget                 

           , then we will send out           catalogs and return the unused advertising 

money to the company.   In contrast, if our advertising budget is less than            
 

then we advertise to as many individuals (from highest to lowest probability) as our 

budget will allow.    

 

Case 2: An Expected Expenditure Equation is Available: Two-Part Targeting 

Problem  

 

 Unlike Case 1, there may be instances when we have more information on how a 

person’s characteristics are likely to affect the amount of merchandise that he/she orders 

from the company.  Suppose, from previous experience with the expenditures of other 

customers, we are able to determine an expected expenditure equation of the form 

  ),,,( 21 iKiii XXXfE    

where, conditional on purchase, iE  represents the expected expenditure of the i-th 

individual with the personal characteristics iKii XXX ,,, 21   .  Then, given the 

probabilities of purchase of the new potential customers, we can sort over individuals, 

from highest to lowest, by their unconditional expected expenditure, say, 

iii PEEE )(  .  Then, assuming a sufficient advertising budget, we would advertise 

sequentially through our sorted individuals until the unconditional expected expenditure 

of the last individual is just equal to the cost of soliciting that individual.  One can 

represent this decision rule in the below idealized graph. 

 We should note that the “best” classifier to use in this case may not necessarily be 

the best classifier for the Case 1 problem above.  Recall in Case 1 we choose the 

classifier that produced the maximum cumulative profit in the validation data set based 

on the postulated Cost/Gain table above.  In the present Case we are simply interested in 

choosing a classifier that does very well in the Two-Part Targeting problem.  Therefore, 

when choosing a “best” classifier for the Two-Part Targeting problem, we should 
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probably run several two-part experiments on the validation data set, one for each 

proposed classifier.  That is, in conjunction with the adopted expenditure equation, we 

should determine which classifier produces the most accurate estimate of actual 

expenditures by customers in the validation data set and then use that classifier in 

subsequent two-part target marketing problems. 

 

UNCONDITIONAL EXPECTED EXPENDITURE GRAPH  

          

• 

Jcutoff Ordered individuals 
(highest E (Ei) to lowest) 

E (Ei) 

C 


