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Maximum Likelihood Estimation of Logit and Probit Models 
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Consequently, if N  observations are available, then the likelihood function is  
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The logit or probit model arises when iP  is specified to be given by the logistic or 

normal cumulative distribution function evaluated at iX  . Let  iXF   denote either 

of theses cumulative distribution functions. Then, the likelihood function of both 

models is  
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Then, the log-likelihood function is  
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Now, the first order conditions arising from equation (3) are nonlinear and non-analytic. 

Therefore, we have to obtain the ML estimates using numerical optimization methods, 

eg, the Newton-Raphson method.  

This method (which will be explained further later) implies the following recursion. 
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In equation (4), 
n

~
 is the n-th round estimate and the Hessian and score vectors are 

evaluated at this estimate. 

From our previous ML theorem, we know that  
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where ML
~

 represents the last iteration of the Newton-Raphson procedure. For finite 

 samples, the asymptotic distribution of ML
~

 can be approximated by   

  
































1
2

,

ML

l
N




 . 

For the logit model,  ii XFP   where  
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is the logistic cdf and the logistic pdf is  
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Also, note that  
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      tetFtftf  1     (8-3) 

 

Using these results it can be shown for the logit model,  
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The Hessian can be shown to be  
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Note that this 


ii XX  matrix is p.d. for all 
~

.   

So, iterate 
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For the probit model,  ii XFP   where  
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is the probit pdf and the probit cdf is  
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Also, note that  
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Then, the score vector for the probit model is  
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The probit Hessian is then 
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Estimation of Marginal Effects in the Logit and Probit Models 

 

The analysis of marginal effects requires that we examine 
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Talk about applications of logit and probit : credit scoring, target marketing, bond 

Rating.  Go over example of German Credit.xls on class website. 

 


