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Maximum Likelihood Estimation of Logit and Probit Models

_ |1 withprobability R,
Y"=0  with probability1- P

Consequently, if N observations are available, then the likelihood function is

N

L=T[R"@-R)™. (1)
i=1
The logit or probit model arises when P, is specified to be given by the logistic or

normal cumulative distribution function evaluated at X/ . Let F(X/3) denote either
of theses cumulative distribution functions. Then, the likelihood function of both
models is

L= ﬁ[ F(Xig)" @-F(XB)™" . 2

Then, the log-likelihood function is
N

InL=I= Z[Yi In F(Xi'ﬁ)‘*‘(l_ yi)ln(l_ F(Xi'ﬂ))]' 3)
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Now, the first order conditions arising from equation (3) are nonlinear and non-analytic.
Therefore, we have to obtain the ML estimates using numerical optimization methods,
eg, the Newton-Raphson method.

This method (which will be explained further later) implies the following recursion.
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In equation (4), ﬁn is the n-th round estimate and the Hessian and score vectors are

evaluated at this estimate.
From our previous ML theorem, we know that
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where EML represents the last iteration of the Newton-Raphson procedure. For finite

samples, the asymptotic distribution of ,EML can be approximated by
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For the logit model, P, =F(X/8) where

F()=—1 (6)
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is the logistic cdf and the logistic pdf is

F’(t): f(t): (l+eft)2 ()

Also, note that
1-F(t)= 1+eett —F(-t) (8-1)
;—(3=1— F(t) (8-2)
f/(t)=—f(t)F(t)—et) (8-3)

Using these results it can be shown for the logit model,



The Hessian can be shown to be
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Note that this XiXi’ matrix is p.d. forall /.

So, iterate f,., = S, —[ ol ,} [a—l}
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F(X/3) where
1
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is the probit pdf and the probit cdf is

F(t)= L f (v)dv

For the probit model, P =

Also, note that

f(t)=—tf(t)
F(-t)=1-F(t)
Then, the score vector for the probit model is
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The probit Hessian is then
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Estimation of Marginal Effects in the Logit and Probit Models

The analysis of marginal effects requires that we examine
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Talk about applications of logit and probit : credit scoring, target marketing, bond
Rating. Go over example of German Credit.xIs on class website.



