
Lecture 6 
 

Numerical Optimization Techniques 
 
Want to maximize or minimize the (possibly nonlinear) objective function ( )F θ


, which 

is usually log likelihood function. 
 
3 parts to numerical search algorithms:   
(1) obtaining initial starting values for the parameters, say 0θ


 

(2) updating the candidate value for θ


 
(3) determining when the optimum has been reached. 
 
If the objective function is globally concave so there is a unique maximum, then any 
algorithm which improves the parameter vector at each iteration will eventually find the 
maximum (example: logit likelihood function).  If the function ( )F θ


 is not globally 

concave, then different algorithms may find different local maxima.  However, all 
iterative algorithms will suffer from the same problem of not being able to distinguish 
between a local and a global maximum. 
 
The main thing that distinguishes different algorithms is how fast they find the maximum.  
One algorithm may be better in one case but not in another.  Performance is often case 
specific. 
 
Numerical optimization algorithms can be broadly classified into two types: first 
derivative methods and second derivative methods.  First derivative methods form 
candidates based on using only the first derivative of the objective function.  Second 
derivative methods form candidates based on using the second derivative of the objective 
function.   
 
———————————————————————————————————— 
Ref.:  EVIEWS User’s Manual pp. 619-622. 
Also see Ch. 4 in A.C. Harvey EATS.  
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Second Derivative Methods 
 
A) Newton-Raphson Method 
 
              ( ) ( ) ( ) ( )

1
1i i i iH gθ θ −
+ = −

  
 

where g is the gradient vector ( ( ) /F θ θ∂ ∂
 

) and H  is the Hessian matrix 

( )2 /F θ θ θ ′∂ ∂ ∂
  

. 
 
* Motivation: First-Order Taylor Series Expansion linearize about θ : 

( ) ( ) ( ) ( )( )ln
0 0i i i i

L
g g H R

θ
θ θ θ θ θ

θ
∂

= = = + − + =
∂


     



 

  ( ) ( )
1

i ii H gθ θθ θ −− = −
   

 

 ∴ ( ) ( ) ( ) ( )
1

1 i ii i H gθ θθ θ −
+ = −

   
 

———————————————————————————————————— 
 
If the function is quadratic, the Newton-Raphson technique will find the maximum in a 
single iteration.   
 
———————————————————————————————————— 
Note: The method of scoring is the same as the Newton-Raphson method except that 

( )
1

iH −−  is replaced with the inverse of the information matrix evaluated at i-th iterate of 
θ


.  The method of scoring is likely to have a slower convergence rate since the 
information matrix is only an approximation of the Hessian.  However, in many 
applications, the information matrix has a single form and is much easier to compute.  
Furthermore, provided the model is identifiable, the information matrix is always positive 
definite.  Therefore, some of the convergence problems of the Newton-Raphson method 
may be avoided.   
 
———————————————————————————————————— 
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B) Quadratic Hill-Climbing (Goldfeld-Quandt) 
 
A straightforward variation of the Newton-Raphson method attributed to Goldfeld and 
Quandt is the following. 
 

( ) ( ) ( ) ( )
1

1i i i iH gθ θ −
+ = − 

  
 

where ( ) ( )i iH H Iα− = − + , where I  is the identity matrix and α  is a positive number 
(chosen by the algorithm). 
 
The effect of the modification is to push the parameter estimates in the direction of the 
gradient vector. 
 
(In EVIEWS Quadratic Hill Climbing is used as the default.  Note, however, that 
asymptotic standard errors are always computed from the unmodified Hessian once 
convergence is achieved). 
 
 
First Derivative Methods 
 
A) Gauss-Newton/ BHHH 
 
 This algorithm follows the Newton-Raphson approach but replaces the negative of the 
Hessian by an approximation formed from the sum of the outer products of the gradient 
vectors for each observation’s contribution to the objective function.  For least squares 
and log-likelihood functions, this approximation is asymptotically equivalent to the actual 
Hessian when evaluated at the parameter values which maximize the function.  When 
evaluated away from the maximum, this approximation may be quite poor.   
 
The algorithm is referred to as Gauss-Newton for general nonlinear least squares 
problems, and Berndt, Hall, Hall, and Hausman (BHHH) for maximum likelihood 
problems.   
 
The advantages are: (1) you only need 1st derivatives; (2) the outer product is necessarily 
positive definite.  The disadvantage is that, away from the maximum, this approximation 
may provide a poor guide to the overall shape of the function, so more iterations may be 
needed for convergence. 
 
B)  Marquardt 
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This algorithm modifies the Gauss-Newton/ BHHH algorithm in the same manner as the 
quadratic hill climbing modifies the Newton-Raphson method by adding a correction 
matrix (or ridge factor) to the outer product matrix.  The ridge correction handles 
numerical problems when the algorithm is near singular and may improve the 
convergence rate.  As above, the algorithm pushes the updated parameter values in the 
direction of the gradient.   
 
In EVIEWS, the Marquardt Algorithm is the default when a first derivative method is 
chosen.   
 
Note that when calculating the asymptotic standard errors, they are calculated from the 
unmodified outer product matrix once convergence is achieved.   
 
 
Derivative Free Methods 
 
Different Types of Grid Searches: 
 
A)  Evaluation of a Random Drawing of Points Uniformly over the Parameter Space (and 
then after choosing best point, doing a Newton-Raphson iteration for example). 
 
B)  Simplex Method (Nelder and Mead 1965) 
Nelder, J.A. and Mead, R. (1965), “A Simplex Method for Function Minimization,” 
Computer Journal, 7, 308-313. 
 
C)  Adaptive Random Search 
Prozanto, C. Walter, E., Venof, A., and Hebruchec, J. (1984), “A General-Purpose Global 
Optimizer: Implementation and Applications,” Mathematics and Computers in 
Simulation, 26, 412-422. 
 
D)  Simulated Annealing 
Conana, A., Marchesi, M., Martini, C., and Ridella, S. (1987), “Minimizing Multimodal 
Functions of Continuous Variables with the Simulated Annealing Algorithm,” ACM 
Transactions on Mathematical Softwares, 13, 262-280. 
 
Goffe, W.L., Ferrier, G.D. and Rogers, J. (1944), “Global Optimization of Statistical 
Functions with Simulated Annealing,” Journal of Econometrics, 60, 65-99. 
 
E)  Genetic Algorithm 
 
Dorsey, R.E. and Mayer, W.J. (1995), “Genetic Algorithms for Estimation Problems with 
Multiple Optima, Nondifferentiability, and Other Irregular Features,” Journal of Bus. & 
Eco. Stat., January, vol.13, no.1, 53-66. 
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