
BOX-JENKINS MODEL NOTATION 
 

 
The Box-Jenkins ARMA(p,q) model is denoted by the equation 
 
      0 1 1 1 1t t p t p t t q t qy y y a a aφ φ φ θ θ− − −= + + + + − − −L −L

t p

.   (1) 
 
The autoregressive (AR) part of the model is 1 1t py yφ φ− −+ +L while the moving average 
(MA) part of the model is 1 1t qa t qaθ θ−− − −L − .  The model's intercept is 0φ  while is the 
"white noise" error.   The parameters (coefficients) 

ta

0 1 1, , , , , ,p pφ φ φ θ θL L of the model are 
determined from the data by the method of moments, least squares, the method of 
maximum likelihood, or some other method that is consistent.  The white noise errors 
terms are assumed to have the following properties: ta
 

1. ,      (zero mean assumption) ( ) 0tE a = t∀
2. 2 2( )t aE a σ= ,     (constant variance assumption) t∀
3. ,     (independence of errors assumption) ( ) 0s tE a a = s t∀ ≠
4. are normally distributed ta

 
Assumption 4 is not always needed for deriving certain results with respect to the Box-
Jenkins model but we will assume it here. 
 
 Equation (1) is referred to as the intercept-form of the Box-Jenkins ARMA(p,q) 
model.  An algebraically equivalent form of the model (often reported by computer 
programs like SAS) is the so-called deviation-from-the mean form of the Box-Jenkins 
model: 
 
  1 1 1 1( ) ( )t t p t p t t q t qy y y a a aμ φ μ φ μ θ θ− − −− = − + + − + − − −L L −   .    (2) 
 
In this form, the mean of y, denoted byμ , is related to the intercept 0φ of equation (1) by 
the formula 0 1[ /(1 )p ]μ φ φ φ= − − −L . 
 
 Probably the most compact way to write the Box-Jenkins ARMA(p,q) model is  
by using "backshift" polynomials 2

1 2( ) 1 p
pB B B Bφ φ φ φ= − − − −L and 

2
1 2( ) 1 q

qB B B Bθ θ θ θ= − − − −L .  ( )Bφ is called the autoregressive backshift 
polynomial and ( )Bθ is called the moving average backshift polynomial.  The 
backshift operators  simply "shift back" in time observations2 3, , ,B B B L ty  so that 

s
t t sB y y −≡ , for example.   Using these polynomials we can write equation (2) compactly 

as 
 



  ( )( ) ( )t tB y B aφ μ θ− =        .      (2') 
 
For example, the ARMA(1,0) model (in brief AR(1)) can be written as 
 
  1(1 )( )t tB y aφ μ− − =

t

. 
 
Using the distributive law and the properties of the backshift operator we have 
 
  1 1t ty By B aμ φ φ μ− − + =  
 
and 
 
  1 1 1t t ty y aμ φ φ μ−− − + =  
 
and finally 
 
  ttt ayy +−=− − )( 11 μφμ    . 
   
This last equation is the deviation-from-the-mean form of the AR(1) Box-Jenkins model. 
Similarly the ARMA(0,1) model (in short MA(1)) can be written as  
 
  1 1t t ty a aμ θ −− = −  
   
and in polynomial form 
 
  ( )t ty B aμ θ− =  
 
where the moving average polynomial is defined by 1( ) 1B Bθ θ= − .  The ARMA(1,1) 
"mixed" Box-Jenkins model can be written as  
   
  1 1( )t t t 1ty y a aμ φ μ θ −− = − + −  
 
or more compactly using backshift polynomials as in  
 
  ( )( ) ( )t tB y B aφ μ θ− =  
 
where 1( ) 1B Bφ φ= − and 1( ) 1B Bθ θ= − . 
 
 For the Box-Jenkins model to be "estimable" the so-called stationarity and 
invertibility conditions must hold.  If we replace the back shift operators  in 
the autoregressive polynomial and the moving average polynomial with corresponding 

pBBB ,,, 2 L



powers of z, , and set these polynomials to zero we have what are called the 
autoregressive polynomial of the ARMA(p,q) Box-Jenkins model, namely, 

pzzz ,,, 2 L

01)( 2
21 =−−−−= p

p zzzz φφφφ L      (3) 
 

and the moving average polynomial of the ARMA(p,q) model, namely 
 
   .    (4) 01)( 2

21 =−−−−= p
p zzzz θθθθ L

 
Treating the parameters pφφφ ,,, 21 L  and pθθθ ,,, 21 L as known in these homogenous 
equations (eventually, to be practical, we will have to use estimates of these parameters) 
let  denote the p roots (zeroes) of the autoregressive polynomial (3) and 

 denote the q roots of the moving average polynomial (4).  For the Box- 
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Jenkins model (1) to be stationary it must be the case that all of the roots of the 
autoregressive polynomial (3) must be greater than one in magnitude (or, if complex, 
have modulus greater than one).  For the Box-Jenkins model (1) to be invertible it must 
be the case that all of the roots of the moving average polynomial must be greater than 
one in magnitude (or, if complex, have modulus greater than one). 
 

STATIONARITY 
 
 Consider the AR(1) model  1 1( )t t ty y aμ φ μ−− = − + .  For this model the 
autoregressive polynomial equation is 01 11 =− zφ  and therefore  is the root of 
the autoregressive polynomial.  Thus, for the AR(1) model to be stationary it is required 
that 

11 /1 φ=ARz

11/φ  > 1 and therefore that 1φ  < 1.  Similarly, for an MA(1) model 

11 −−=− ttt aay θμ  to be invertible it is required that = MAz1 11/θ  > 1 and therefore that 

1θ  < 1.  For the stationarity and invertibility conditions for other popular Box-Jenkins 
models like the AR(2), MA(2), and ARMA(1,1) models, see my ADF and PACF table in 
the document ACF_PACF.doc.  By definition, all AR(p) models are invertible while all 
MA(q) models are stationary. 
 

Now consider the practical implications of stationarity and invertiblility in Box-
Jenkins models.  When a Box-Jenkins model is stationary its observations ty  satisfy the 
following three properties: 

 
1. ( )tE y μ=     (i.e. the mean of t∀ ty  is constant for all time periods) 
2. Var( ty ) = 2

yσ    (i.e. the variance of t∀ ty  is constant for all time periods) 
3. Cov( ,t t jy y − ) = jγ  (i.e. the covariance between ty  and t jy −  is constant for 

all time periods and fixed j, j = 1, 2, L )  
 
These three conditions give rise to what is called weak stationarity (or just stationarity 
for short).  The practical implication of stationarity is that only one realization of the 



time series ty  is needed for us to be able to consistently estimate the mean μ , the 
variance 2

yσ , the covariance jγ , and the autocorrelation jρ  with the sample statistics y , 

, , and .  These statistics are defined as  2
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                                            (sample autocorrelation) 
 
On the other hand, we can see that if our time series ty  has, for example, an ever 
increasing mean (trend), then the sample mean y  would not be appropriate for 
characterizing the trend in the data.  The sample statistic  would likely not be 
appropriate for series data that exhibits, for example, an increasing or decreasing 
volatility overtime.  Furthermore, data that exhibits a changing autocorrelation structure 
overtime would be incorrectly characterized by the sample statistics and .  For some 
examples of various forms of nonstationarity in time series data you should run the SAS 
program MCARLO.sas that is available on the website for this course.  I will go over 
some of these graphs in class and what data transformations are necessary to change a 
nonstationary time series into a stationary time series so that the transformed series can 
be properly modeled using the Box-Jenkins model.  For example, when a time series has 
a linear trend, a typical transformation to use to make the data

2
ys

jc jr

ty stationary is to take the 
first difference of the data, *

1t t t ty y y y−Δ ≡ − = , where Δ represents the first difference 
operator and *

ty  represents the transformed data.   
 
     Since many economic and business time series have trend in them the Box-Jenkins 
model is generalized to the case where tyΔ is modeled as an ARMA(p,q) process.  Such a 
model can be written in intercept form as  



 
  0 1 1 1 1t t p t p t t q t qy y y a a aφ φ φ θ− − −Δ = + Δ + + Δ + − − −L θ −L

q

                   (5) 
 
or in deviation-from-the-mean form as  
 
 1 1 1 1( ) ( )t y t y p t p y t t q ty y y a a aμ φ μ φ μ θ θΔ − Δ − Δ −Δ − = Δ − + + Δ − + − − −L L −            (5') 
 
where yμΔ  denotes the mean of the tyΔ series.  In the case of taking the first difference of 
the data to make it stationary (and thus amenable to Box-Jenkins analysis) the models (5) 
or (5') or denoted by ARIMA(p,1,q) where the middle number represents the number of 
times the data has to be differenced in order to make the data stationary.  In general, if the 
data has to be differenced d consuecutive times to render the data stationary, as in d

tyΔ , 
then the d-differenced Box-Jenkins ARMA(p,q) model is denoted by ARIMA(p,d,q) and 
is written in intercept form as 
 
     .                          (6) 0 1 1 1 1

d d d
t t p t p t ty y y a aφ φ φ θ θ− − −Δ = + Δ + + Δ + − − −L q t qa −L

 
It cannot be overemphasized how important the proper choice of the order of 

differencing (d) is in properly modeling economic and business time series by means of 
the Box-Jenkins model.  If an inappropriate choice of d is made before proceeding to 
build a Box-Jenkins model for the data, poor forecasting models will result.  More will be 
discussed on this topic when we address the issue of "unit root" testing later in the course. 
 
 

INVERTIBILITY 
 

 The implication of the invertibility condition can best be appreciated by 
considering the MA(1) model with, for simplicity, a zero mean for ty  assumed ( 0 0φ = ).  
We can rewrite the MA(1) model by iterative substitution.  
 
  1 1t t ty a aθ −= −  
 
                  = 1 1 1 2( )t t ta y aθ θ− −− +  
     
                             =  2

1 1 1 2t t ta y aθ θ− −− −
 
       .      (7) 0

1
1112

2
111 ayyya tt

ttt
+

−− −−−−−= θθθθ L

      
From equation (7) we can see that an MA(1) model can be rewritten as an infinite order 
(as t ) AR model (AR(∞ )).  But for (7) to be meaningful, we should have →∞ 1 1θ <  so 
that current values of y ( ty ) become less and less dependent on distant past values of y as 
time proceeds.  If say, 1 1> , a current ty will be infinitely dependent on the past θ



observations as .  This last circumstance doesn't seem appropriate to real world 
applications.  Therefore, in the MA(1) case, imposing the invertibility condition 
eliminates models that put infinite weight on distant past values of a time series in 
determining current values of the time series.   

t →∞

 
 Another rationale for imposing the invertibility conditions on MA models is to 
ensure identification of MA models.  Consider the following two MA(1) models: 
 
   1 1t t ty a aθ −= −        (8) 
and 
 
   *

1t t t 1y a aθ −= −   where *
1 1/ 1θ θ= .    (9) 

 
The first MA(1) model has the same autocorrelation function as the second MA(1) 
model!  The autocorrelation function of the first model is 2

1 1 1/(1 )ρ θ θ= − +  and 0 for 
2j ≥  while the autocorrelation function of the second model is 

* *2 2
1 1 1 1 1 1 1/(1 ) (1/ ) /(1 (1/ ) ) /(1 )2ρ θ θ θ θ θ θ= − + = − + = − + and 0 for 2j ≥ .  Since the 

autocorrelation functions of the two models are exactly the same, the autocorrelation 
function cannot be used to distinguish between the two parametrizations.  Therefore, a 
second reason for imposing the invertibility conditions for MA models is to ensure their 
uniqueness (as it relates to the autocorrelation function) for given values of the MA 
coefficients.  
 
 When building Box-Jenkins models it should be recognized that such models are 
identified up to a common factor.  That is, if a common root exists between the 
autoregressive and moving average polynomials, then a given ARMA(p,q) model can be 
reduced to a ARMA(p-1,q-1) model.  Consider the following ARMA(1,1) model 
 
   tt aByB )1())(1( 11 θμφ −=−−  .      (10) 
 
Obviously, if 11 θφ = , then the ARMA(1,1) model of (10) can be reduced to the white 
noise model (ARMA(0,0)), 
 
   tt ay =− μ        (11) 
 
by canceling out the common factors that exist across the autoregressive and moving 
average backshift polynomials.  The existence of this common factor is the result of the 
autoregressive and moving average polynomials ((3) and (4)) have the common roots 

 because 1111 /1/1 θφ === MAAR zz 11 θφ = .  Thus, in the presence of these common factors 
(common roots), the data will not allow us to distinguish between equation (10) and (11) 
and we say that ARMA models are identified up to a common factor. 
 
 The lesson to be drawn here is that when building a Box-Jenkins model for a 
given time series we should be careful in comparing two competing model, one of which 



has one more autoregressive parameter and one more moving average parameter than the 
other competing model, that is when we are comparing a ARMA(p-1, q-1) model with a 
ARMA(p,q) model.  If the bigger model has an (estimated) autoregressive polynomial 
with a root that is “almost” equal to a root of the (estimated) moving average polynomial 
then we might suspect that there is in fact a common root in the population model and 
thus the simpler model is to be preferred.  So when you have a satisfactory (in the sense 
of goodness-of-fit statistics and white noise residuals) ARMA(p-1,q-1) model but a 
“somewhat” better ARMA(p,q) model you should inspect the empirical roots of the 
autoregressive and moving average polynomials of the ARMA(p,q) model to see if there 
is an “almost” common root across the polynomials.  If there is, then you are probably 
better served (in terms of forecasting accuracy) in going with the simpler ARMA(p-1,q-
1) model.    
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