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0 1ρ =  and  is often denoted by ( , )t t jCov y y − jγ  
while Var if often denoted by ( )ty 0γ .  Note that  

j jγ γ −=  and j jρ ρ−=  and because of this symmetry 
the theoretical autocorrelation function and the sample autocorrelation 

function (below) only need be examined over the positive lags 
1,2j = L .   

 
SAMPLE AUTOCORRELATIONS 
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The  are consistent estimators of the theoretical autocorrelation coefficients jr jρ . Under 
the assumption that  follows a white noise process the standard errors of these  are 

approximately equal to 
ty jr

1 .  Thus, under the null hypothesis that  follows a white 

noise process, roughly 95% of the  should fall within the range of 

T ty

jr 1.96 / T± .  If more 
than 5% of the  fall outside of this range, then most likely  does not follow a white 
noise process.  

jr ty

 
THEORETICAL PARTIAL AUTOCORRELATIONS 
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1,2,j = L  
= the correlation between and ty t jy −  after netting out the effects the intervening values 

1, ,t ty jy − +L  have on both of them 
 



 
SAMPLE PARTIAL AUTOCORRELATIONS 

 
ˆ
jjφ  
 

are calculated using the formulas for the theoretical autocorrelations for a given 
ARMA(p,q) model (see my ACF_PACF_Table.doc Word document for the formulas) but 
replacing all of the theoretical autocorrelations ( jρ ) with the above sample 
autocorrelations ( ) and all of the unknown Box-Jenkins coefficients (jr ,i iφ θ ) with their 

corresponding estimates ( ˆ ˆ,i iφ θ ) obtained by the method of moments or some other 

method.  The ˆ
jjφ  are consistent estimators of the theoretical partial autocorrelations, jjφ .  

Under the assumption that  follows a white noise process the standard errors of these ty
ˆ
jjφ  are approximately equal to 1 .  Thus, under the null hypothesis that  follows a 

white noise process, roughly 95% of the 

T ty
ˆ
jjφ  should fall within the range of 1.96 / T± .  

If more than 5% of the ˆ
jjφ  fall outside of this range, then most likely  does not follow a 

white noise process. 
ty

 
 

GOODNESS-OF-FIT MEASURES 
 

 
1. AIC (Akaike Information Criterion) 
 

2ˆ2 ( ) 2tAIC L a K= − +∑   
 
where K = p + q + 1, L( ) = the log of the likelihood function of the Box-
Jenkins ARMA(p,q) model, a = the residual at time t for the Box-Jenkins model 
and the log likelihood function, 

2ˆta∑
ˆt

2ˆ( tL a )∑ , is a monotonically decreasing function 

of the sum of squared residuals, 2ˆta∑ .  In other words, the smaller is, the 

larger L( ) is and vice versa.   

2ˆta∑
2ˆta∑

 
2. SBC (Schwartz Bayesian Criterion) 
 

2ˆ2 ( ) ln( )tSBC L a K n= − +∑ 2ˆ2 ( ) ln( )tSBC L a K n= − +∑  
 
where n is the number of residuals computed for the model. 
 

In terms of choosing a Box-Jenkins model, the smaller these goodness-of-fit measures, 
the better.  That is, we prefer the Box-Jenkins model that has the smallest AIC and SBC 



measures.  Notice that, as you add coefficients to the Box-Jenkins model, ( ,i iφ θ ), the fit 
of the model, as measured by the sum of squared residuals, 2ˆta∑ , always decreases and, 

therefore, adding coefficients always increases the log likelihood, 2ˆ( tL )a∑ , of the Box-
Jenkins model.  To offset the tendency for adding coefficients to a model just to improve 
its fit, the above goodness-of-fit (information) criteria each include a "penalty" term.  
(For the AIC criterion the penalty term is +2K while for the SBC measure the penalty 
term is +Kln(T).  Thus, with these criteria, as one adds coefficients to the Box-Jenkins 
model, the improvement in fit coming from reduction in the sum of squared residuals  
will eventually be offset by the penalty term moving in the opposite direction.  The 
goodness-of-fit criteria are then intended to keep us from building large order Box-
Jenkins models just to improve the fit just to find that such large order models don't 
forecast very well.  Shibata (1976) has shown that, for a finite-order AR process, the AIC 
criterion asymptotically overestimates the order with positive probability.  Thus, an 
estimator of the AR order (p) based on AIC will not be consistent.  (By consistent we 
mean that, as the sample size goes to infinity, the correct order of an AR(p) Box-Jenkins 
model will be correctly chosen with probability one.)  In contrast, the SBC criterion is 
consistent in choosing the correct order of an AR(p) model.  Often these two criteria 
choose the same Box-Jenkins model as being the best model.  However, when there is a 
difference in choice, the AIC measure invariably implies a Box-Jenkins model of bigger 
order (K = p + q + 1) than the order of the model implied by the SBC criterion.  In other 
words, the SBC criterion tends to pick the more parsimonious model when there is a 
"split" decision arising from using these criteria.  Personally, I prefer to rely on the SBC 
criterion in the case of "split" decisions. 
 

A TEST FOR WHITE NOISE RESIDUALS 
(and thus the Box-Jenkins model's "completeness") 

 
H0:  Residuals of Estimated Box-Jenkins model are white noise (i.e. uncorrelated at all 
       lags).  Other things held constant, the estimated Box-Jenkins model is adequate. 
 
H1:  Residuals of Estimated Box-Jenkins model are not white noise.   
       In this case, a better model can be found by adding more parameters to the model. 
 
The chi-square test used to test for white noise residuals is calculated as 
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n = number of residuals, and is the time t residual of the Box-Jenkins model.  This 
statistic was suggested by Ljung and Box (1978) and is called the Ljung-Box chi-square 
statistic for testing for white noise residuals.  The null hypothesis above is accepted if the 
observed chi-square statistic is small (i.e. has a probability value greater than 0.05) and is 
rejected if the chi-square statistic is "large" (i.e. has a probability value less than 0.05).  
As far as the choice of the number of lags, m, to use, I would suggest m = 12 for 
quarterly data and m = 24 for monthly data to increase the power of the test given the 
frequency with which the data is observed. 

ˆta

 
 

CONSTRUCTION OF THE P-Q BOX 
 
 

 In this class we will be constructing a "P-Q Box" of the form 
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where . represents the following numbers in each cell:  AIC, SBC, 2

mχ , and the p-value of 
the Ljung-Box chi-square statistic, 2

mχ .  These cells represent the most prevalent Box-
Jenkins models that apply to non-seasonal economic time series data, namely, the 
ARMA(0,0), AR(1), AR(2), MA(1), MA(2), and ARMA(1,1) models.  Using the sample 
ACF and sample PACF of the data one can often narrow down the choice between these 
cell (models) but not always with certainty.  Thus, the P-Q Box can often help confirm 
which Box-Jenkins model is best for the data.  The model with the lowest AIC and SBC 
measures and having white noise residuals is the model that the P-Q Box statistics 
suggest.  Hopefully, after looking at the sample ACF and sample PACF and the P-Q Box 
results one can come to a tentative choice for the p and q orders of the Box-Jenkins 
model. 
 

OVERFITTING EXERCISE 
 

To confirm the choice of model suggested by the sample ACF, sample PACF, and 
the P-Q Box, one should conduct an overfitting exercise.  That is, you should fit two 
additional Box-Jenkins models, one having one more autoregressive coefficient and one 
having one more moving average coefficient and then examining (individually) the 
statistical significance of the extra coefficient in each model.  For example, if your 
tentative choice is p = 1 and q = 0 (an AR(1) model), you should examine the AR2 
coefficient in an AR(2) model and determine whether this "overfitting" coefficient is 



statistically significant or not.  If it is not statistically significant (i.e. the p-value is > 
0.05), you can "fall" back to your original choice.  The other overfitting model for the 
AR(1) model is the ARMA(1,1) model.  So when you fit it, the overfitting parameter is 
the MA1 parameter.  If it is not statistically significant, then you can "fall" back to your 
original "almost final" choice again and make it your "final" choice for forecasting 
purposes.  Of course, if either of the overfitting parameters is statistically significant, you 
need to continue the model building process. 


