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Abstract: This paper presents a decision tree approach for teaching econometrics students how to properly model bivariate time series data sets.  Students are given Monte Carlo data sets and are asked to choose one of four models to describe the data.  The decision tree takes the student through various pre-test procedures that help the student choose a correct model.  The construction of the Monte Carlo data sets and how they can be obtained from the author are discussed in the appendix of the paper. 


�
“I hear, I forget; I see, I remember;





I do, I understand”





- Confucius








Introduction





	As indicated by the above quote, practice is an important learning tool.  I have certainly 





found this to be true in teaching econometrics students how to model multiple time series data.  Given the recent advent of unit root tests (e.g. Dickey and Fuller (1979, 81)), the popularization and thorough derivation of the spurious regression problem (Granger and Newbold (1974) and Phillips (1986)), and the introduction of the concept of cointegration by Granger (1983) and Engle and Granger (1987), there are now many more “rules and regulations” that the student must pay attention to when properly modeling multiple time series.  This paper outlines a method that I have successfully used in teaching multiple time series modeling.  Numerous Monte Carlo bivariate time series data sets are generated that exhibit many, but certainly not all, of the possible characteristics of real world time series data.  Students are then asked to analyze their individual Monte Carlo bivariate time series and determine an appropriate model representation of the data.


Of course the students do not know the true data generating process.  Once students





analyze their individualized  Monte Carlo series and commit to a specific model, they are told whether they are correct or not.  If their representation of the data is correct, they receive positive feedback and gain confidence in their modeling skills.  On the other hand, if their chosen representation is incorrect they are told where they went wrong and how they can avoid making the same mistakes in the future.  This practice is repeated many times with different data generating processes (as described below) until the student “gets the hang of things.”  Initially the number of correct representations chosen by the students in the first round of the “competition”  may be relatively few.   However, in subsequent rounds the students become increasingly accurate in finding the correct representations of the data.  Obviously, the students learn by doing.


	The remainder of this paper follows the line of presentation of my lectures on the topic of multiple time series modeling.  The points of presentation are:


Preliminary Discussion


       a.   The Spurious Regression Problem and Why It is Important to Know


       the Stochastic Orders of the Variables Being Analyzed


Introduce the Learning Experiment to the Student and


the Four Data Generating Processes (DGPs) They Should Consider


The Time Series Modeling Decision Tree


Describe the Syntax of the Tree


Note That the Four Different DGPs are the Terminal Nodes of the Tree


Detailed Description of the Decision Tree and Its Elements


The Importance of Plotting the Data


Unit Root Tests


Cointegration Tests


Granger Causal Testing


Model Building for Specific Cases


Independent Box-Jenkins Models


Transfer Function Model


Equal Lag Length VAR


Error Correction Model





The next section of this paper covers the preliminary discussion (point 1).  The Time Series Modeling Decision Tree and some of its detail is presented in section III (point 2 and 3).  Section IV contains concluding remarks and how the reader can obtain some of the Monte Carlo data sets that are used in the student exercises.


�
II.  Discussion of Spurious Regression, Stochastic Order, and the Learning Experiment


The modeling of time series data that are nonstationary is a very delicate matter.  One can easily find a “significant” relationship between two independent nonstationary time series if one is not careful.  This phenomenon is called the spurious regression problem.  It has been thoroughly discussed in the literature by Granger and Newbold (1974) and Phillips (1986).  To demonstrate the problem, students are asked to run a SAS computer program that generates 20 independent bivariate time series data sets.  Each data set is made up two independent random walks without drift:


				�					(2.1)


				�	,				(2.2)


where � and � represent independent white noise error terms distributed normally with zero mean and unit variance.  For each of the 20 bivariate data sets I ask the students to run the following regressions:


					�				(2.3)


				         �,				(2.4)


where � and � is similarly defined.  Students are then asked to record the t-statistics for the least squares coefficient estimates of b and d for each data set.  To the students’ amazement, they find the implications of the two competing regressions to be quite different when viewed comprehensively over the 20 Monte Carlo (X,Y) data sets.  Regression (2.3), the spurious one, more often than not indicates a statistically significant relationship between the independent time series X and Y while only in a few instances out of twenty do they find the regression (2.4), the non-spurious one, to be significant.  Of course, the latter conclusion is the appropriate one because the X and Y series are by construction independent.


	The point of the above spurious regression exercise is to teach the student the importance of  knowing  the stochastic order of the variables being analyzed, that is, whether the data should be differenced, I(1), or not, I(0), before proceeding with the data analysis.  If the data is assumed to be I(0) when in fact it is I(1), false statistical conclusions can easily be obtained.  In my opinion this motivates the student to persevere through the somewhat tedious lectures on unit root tests that follow.


	Next the learning experiment the students will be asked to go through is presented.  They each are given a data set containing bivariate time series X and Y.  The students are told that the data they have been given has been generated by one of the following four models.  The four possible models are:


Model 1: Independent Box-Jenkins Time Series


	Assume that � and � are stationary, that is, they are both I(0) and do not need to be differenced.  Furthermore assume that � and � are independent in that � does not Granger-cause � (�and � does not Granger-cause � �.   Model 1 is represented by


		��		(2.5)


	�,		(2.6)


where � and �are independent white noise error terms.  That is, � follows an ARMA(p,q) Box-Jenkins process and � follows an ARMA(r,s) Box-Jenkins process both of which are independent of each other.  In the case that either �EMBED Unknown���or �EMBED Unknown��� is I(1) or both are I(1) but not cointegrated, the�'s and/or �'s in the above equations (2.5) and/or (2.6) are replaced  by their stationary forms, i.e. � and/or �.


Model 2: Transfer Function Model


	Assume that � and � are stationary, that is they are both I(0), and furthermore that � Granger-causes �(�) but � does not Granger-cause �(�).  That is, there is one-way causality from �to�but not the reverse.  Then Model 2 is taken to be the classic Transfer Function model (Box and Jenkins (1970,76)):


				�			(2.7)


				�,					(2.8)


where �and �are independent white noise error terms and the various backshift polynomials follow the forms 


				�


				�


				� EMBED Equation.2  ���


				� EMBED Equation.2  ���


				� EMBED Word.Picture.6  ���


				�.


Equation (2.7) represents the systematic dynamics equation of the Transfer Function model while equation (2.8) represents the exogenous (leading indicator) variable equation.  Obviously equation (2.7) is a rational distributed lag model with ARMA errors and equation (2.8) is a Box-Jenkins ARMA(m,n) model for the exogenous variable�.


	If instead � Granger-causes �(�) but � does not Granger-cause�(�) then the roles of �and �should be reversed in the above equations (2.7) and (2.8).  Of course, should either � or � be I(1), or both are I(1) but not cointegrated, the�'s and/or�'s in the equations (2.7) and/or (2.8) should be replaced by their stationary forms, i.e. � and/or �.


Model 3: Equal Lag-length VAR


	Assume that � and �are stationary (� is I(0) and � is I(0)).  Furthermore assume that � and � are two-way causal in the Granger-sense, i.e.� and �.  Then Model 3 is represented by


		� EMBED Equation.2  ���� EMBED Equation.2  ���	(2.9)


		� EMBED Equation.2  ���		(2.10)


This model is the classic equal-lag length vector autoregression (VAR) of Sims (1980).  Again, if either� or � is I(1) or both are I(1) but not cointegrated, the�'s and/or the�'s in the above equations (2.9) and/or (2.10) should be replaced by their stationary forms, i.e. �.


Model 4: Error Correction Model


	Assume that �and � are both I(1) and that they are cointegrated with cointegrating relationship �, where � is an I(0) process with zero mean.  (The most common case assumes � = 0 and therefore that the time trend is absent from the cointegrating relationship.)  


�
The most general Error Correction Model (ECM) is that of Johansen (1995, pp. 80 - 84):


	�


			�   			(2.11)


	�


			�.			(2.12)


The ECM of equations (2.11) and (2.12) is quite general and gives rise to five nested models.  These models are:


Series � and � have no deterministic trends and the cointegrating relationship


      has no intercept (i.e. �.


Series � and � have no deterministic trends but the cointegrating relationship has


      an intercept (i.e. � EMBED Equation.2  ��� but �.


Series � and � have linear trends but the cointegrating relationship has only


      an intercept (i.e. �and � but �.


Both � and � have linear trends and the cointegrating relationship has a 


      deterministic trend as well (i.e. � and � but �.


Series� and � have quadratic trends while the cointegrating relationship


      has a linear deterministic trend (i.e. �and �.


These five cases are nested from the most restrictive, case a., to the least restrictive, case e.  These cases can be distinguished by examining a series of likelihood ratio tests as provided by the computer program EVIEWS (1997, Version 3, pp. 507-08).  Also see Johansen (1995, pp. 80-84).  Each of these cases is represented in the Monte Carlo data sets I provide to the students.


III. Time Series Modeling Decision Tree


	After the presentation of the four models students are introduced to a "time series modeling decision tree."  See Figure 1.   I have found this decision tree to be very useful in channeling students toward the correct choice of models for their Monte Carlo data sets.  The decision tree has a major two-way branch at the third "action" node.  ("What is the stochastic order of each series?  I(1) or I(0)?")  Thereafter the two branches lead to one of the four terminal nodes representing the four models outlined in Section II above.


	Now let us consider the decision tree in Figure 1 in some detail.


	Node 1: "Plot the X, Y series to understand the essential characteristics of the data."


This node is a very important one in that by plotting the data we can determine if there are missing observations or outliers in the data and how they might be treated before proceeding with further data analysis.  For an interesting set of papers on these subjects see Fomby and Hill (1998).  In the Monte Carlo data that the students receive there are no "intentional" outliers or missing observations but it is stressed to the student that in "real world" applications this may not always be the case.  Most importantly by plotting  the X and Y Monte Carlo time series data the students will be able to determine which of three cases to consider when testing the individual series for unit roots.  In so doing they determine whether the data needs to be differenced or not before proceeding.


	Node 2: "Conduct Dickey-Fuller Unit Root Tests.  Cases 1, 2, or 3?"       


	For each Monte Carlo time series X and Y the student needs to decide which Dickey-Fuller unit root testing equation should be applied.  In the case of potentially slow turning data around a zero mean" (see Figure 2) the appropriate test equation for the time series X (and similarly for Y) is Case 1,


		�EMBED Unknown���				(3.1)


with null and alternative hypotheses:


�
		�EMBED Unknown��� (a unit root exists and the data needs to be differenced)


		�EMBED Unknown��� (the data are stationary around a zero mean and differencing


			       is not needed)


The null hypothesis is often tested by the least squares t-statistic for �EMBED Unknown���.  Although the lag length p in equation (3.1) can be determined in a number of ways, it is often determined by minimizing a goodness of fit measure like the Akaike Information Criterion or Schwartz Bayesian criterion.  At the same time the residuals �EMBED Unknown��� of the test equation (3.1) are white noise as indicated by, say, the Box-Pierce Q statistic.


	In the case of "potentially slow turning data around a nonzero mean" (as in Figure 2 but turning around a nonzero value) the appropriate test equation is, Case 2,


		�EMBED Unknown���  			(3.2)


where �EMBED Unknown���.  The null and alternative hypotheses are the same as in Case 1 and the choice of lag length p proceeds as in Case 1.


	In the case of "potentially slow turning data around a trend" (see Figure 3) the appropriate test equation is, Case 3,


		�EMBED Unknown��� 			(3.3)


with �EMBED Unknown���but �EMBED Unknown���assumed.  The null and alternative hypotheses are:


		�EMBED Unknown���(a unit root exists and the data needs to be differenced)


		�EMBED Unknown���(the data are stationary around a deterministic trend and


			      should be detrended).  See Figure 4.


Again the choice of lag length p proceeds as in Case 1.


	Of course the choice of the appropriate case for unit root testing is crucial in order that the test be consistent.  The choice of the lag length p is also important in order to ensure the approximate size of the test and the best possible power.  The critical values for these tests are not available in conventional statistical tables.  Appropriate test tables can be found in the more advanced time series textbooks like Hamilton (1994).


	Node 3: "What is the stochastic order of each series?  I(1) or I(0)?"


	Once the stochastic orders of the Monte Carlo time series X and Y have been determined by the Dickey-Fuller unit root tests a major modeling decision must be made by the student.  If at least one of the two series is I(0), either Model 1, Model 2, or Model 3 is implied.  See the left side of the decision tree after Node 3.  In contrast, if both series X and Y are I(1), possibly the series X and Y are cointegrated as in Engle and Granger (1987).  The student first tests for cointegration by either the single equation methods of Engle and Granger (1987) and Phillips and Ouliaris (1990) or by using the system of equations approach proposed by Johansen (1988, 91 ). �   If the series X and Y are cointegrated, the student proceeds to build an equal lag length ECM along the lines of Model 4 and one of the cases a. - e.  See equation (2.12) and the following explanation of the various cases.  These cases are nested from the least restrictive (case e) to the most restrictive (case a) and can be tested by a series of likelihood ratio tests discussed in Johansen (1995) and executed, for example, in the EVIEWS software (1997, version 3).  As noted to the students, a careful examination of the jointly plotted time series X and Y can help the student determine, which of the cases a. - e. might be preferred a priori.  See Figure 5 for a plot of these five distinct cases.  As discussed by Enders (1995, pp. 396-97), the choice of the equal lag length � EMBED Equation.2  ��� for the Johansen test is quite important and can be determined by running OLS equation by equation on the levels data and using system-wide goodness-of-fit measures.


	Should both of the Monte Carlo time series X and Y be I(1) but not be cointegrated, the student moves to the left-hand side of the decision tree and proceeds to entertain the possibility of using either Model 1, Model 2, or Model 3 to characterize the data generating process, of course, after differencing each individual series.


	The student is able to distinguish between Models 1, 2, and 3 through the use of the Granger (1969) causality test.  If the Granger causality test indicates that the two series, in their stationary forms, are independent, the student proceeds to build two separate (independent) Box-Jenkins models using the conventional identification and estimation techniques of Box and Jenkins (1970, 76).  If the Granger causal test indicates one-way causality, a transfer function model, in the spirit of Box and Jenkins (1970, chapter 11) or Vandaele (1983, chapters 10 - 13) is built.  Finally, if two-way causality is indicated by Granger causal testing, an equal-lag length VAR can be used to characterize the series X and Y.�  The equal lag length of the VAR can be chosen by using system-wide goodness-of-fit measures as in Enders (1995, p. 315).


	This completes the student exercise. The student hands in her estimated model and is given feedback on the correctness of her choice.  If the instructor desires, this Monte Carlo exercise can be repeated several times, giving each student new data sets that reflect the other data generating processes that the student has not yet seen.  Alternatively, the instructor could give each student, all at once, four different (X,Y) Monte Carlo data sets having been generated by each of the four Models 1 - 4.  Then should any student obtain the same data generating process for two or more of the data sets, he would be forewarned to go back and think through the analysis again before handing in the exercise.


IV. Concluding Remarks


	In years past this learning-by-doing approach of teaching econometrics students how to build multivariate time series models would not have been practical.  The availability of high speed personal computers and the development of customized computer packages like EVIEWS and SAS make the quick and accurate analysis of multiple time series data a relatively straightforward task.  The time series modeling decision tree presented here is useful for teaching students how to properly model bivariate time series by following a set of well defined and disciplined steps.  Of course the student will eventually face the need to move beyond the pristine bivariate time series world that they encounter in the present exercise.  Their experience here, however, will help build their confidence in time series modeling.  Hopefully, they will perserve when they face the more formidable task of building trivariate and higher order models having mixtures of I(0), I(1), and I(2) stochastic orders and two or more cointegrating relationships.�  The exercises here are intended to teach students how to “walk.”  Real life experiences with multiple time series will teach them how to “run.” 


In the appendix additional details are given on the Monte Carlo data sets used in this exercise and how the reader, if interested, can obtain them.  �
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� In my class I ask students to pursue both single equation and system approaches to see if they get similar results.  If similar results are not obtained, the student has to estimate a trial Error Correction Model and investigate the statistical significance of the error correction coefficients �EMBED Unknown���and �EMBED Unknown��� in equations (2.11) and (2.12).  If both of the estimates of �EMBED Unknown���and �EMBED Unknown���are statistically insignificant, cointegration is judged not to be present.  Otherwise, it is assumed that cointegration is present.


 


� Just as easily a vector ARMA model could be built along the lines of Akaike (1976) and State Space modeling.  See SAS/ETS User’s Guide (1993), Version 6, Second Edition, chapter 12 and the discussion of PROC STATESPACE.   However, equal lag length VARs are easier to teach students in a first course in time series. 


� For a very nice methodological paper concerning the modeling of a mixture of I(0), I(1), and I(2) time series, see Chang (1998),
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